Theory of Computation

Final Examination on January 13, 2009

Problem 1 (25 points). Show that if $SAT \in P$, then FSAT has a polynomial-time algorithm. (Hint: You may want to use the self-reducibility of SAT.)

Proof. Assume SAT \in P. We describe below how to find a truth assignment to an input Boolean expression ϕ in time polynomial in $|\phi|$. If $\phi \notin$ SAT then it does not have a satisfying truth assignment. So we assume otherwise. Denote the variables of ϕ by x_1, \ldots, x_n . Let t be the empty truth assignment to x_1, \ldots, x_n . For i = 1 up to n, we expand t to include the assignment $x_i = \text{true}$ if $\phi[t \cup \{x_i = \text{true}\}] \in \text{SAT}$ and $x_i = \text{false}$ otherwise. Clearly, after n iterations, t will end up being a satisfying assignment of ϕ . It is also clear that the above procedure runs in time polynomial in $|\phi|$.

Problem 2 (25 points). Let x be a random variable taking positive integer values. Show that for any k > 0, $\text{prob}[x \ge kE[x]] \le 1/k$.

Proof. Let p_i be the probability that x = i. Then

$$E[x] = \sum_{i < kE[x]} ip_i$$

$$= \sum_{i < kE[x]} ip_i + \sum_{i \ge kE[x]} ip_i$$

$$\ge kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

Problem 3 (25 points). In the slides, we have shown a 2-round interactive proof system for GRAPH NONISOMORPHISM. Hence GRAPH NONISOMORPHISM is in IP. But is GRAPH ISOMORPHISM also in IP? Briefly justify your answer.

Proof. Let $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ be isomorphic graphs. A permutation π on V with $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$ constitutes a succinct certificate for $G_1 \cong G_2$. Nonisomorphic graphs cannot have such certificates.

Problem 4 (25 points). Show that if $\#SAT \in FP$, then P = NP.

Proof. Given a Boolean formula ϕ , we calculate its number of satisfying truth assignments, k, in polynomial time. Then we declare $\phi \in SAT$ if and only if $k \geq 1$. As SAT is NP-complete, P = NP.