Legendre’'s Law of Quadratic Reciprocity®

e Let p and q be two odd primes.

e The next result says their Legendre symbols are distinct
if and only if both numbers are 3 mod 4.

Lemma 65 (Legendre (1785), Gauss)

p—1 g—1

(plg)(glp) = (=1) =2 =

2First stated by Euler in 1751. Legendre (1785) did not give a correct
proof. Gauss proved the theorem when he was 19. He gave at least 6
different proofs during his life. The 152nd proof appeared in 1963.
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The Proof (continued)

e Sum the elements of R’ in the previous proof in mod?2.
e On one hand, this is just S 7"/ mod 2.

e On the other hand, the sum equals

(p—1)/2 ;
Z (qi—p{—qJ)+mpmod2
p

i=1
(p—1)/2 (p—1)/2

q Z 1 — P Z {%J + mp mod 2.
i=1

1=1

— Signs are irrelevant under mod?2.

— m is as in Lemma 64 (p. 486).
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The Proof (continued)

e Ignore odd multipliers to make the sum equal

(p—1)/2 (p—1)/2

Z 1 — Z {ﬂJ + m mod 2.
i=1 i=1 p

e Kquate the above with Z(p_ )2 i mod 2 to obtain

EJ mod 2.

(p—1)/2 | .
;
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The Proof (concluded)

Z(p 1)/2 LEJ is the number of integral points under the
line y = (q/p)x for1 <z <(p—1)/2.

Gauss’s lemma (p. 486) says (q|p) = (—1)™.
Repeat the proof with p and g reversed.

So (plg) = (—1)™, where m/ is the number of integral
points above the line y = (¢/p) x for 1 <y < (¢ —1)/2.

As a result, (p|q)(qlp) = (=1)™ ™"

But m + m/ is the total number of integral points in the

p—1 g—1
2 2 -

p—1 g—1 . .
5= X “5— rectangle, which is
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Eisenstein’'s Rectangle

p=11and g =7.
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The Jacobi Symbol®

The Legendre symbol only works for odd prime moduli.

The Jacobi symbol (a|m) extends it to cases where m

is not prime.

Let m = p1pa - - - pr. be the prime factorization of m.

When m > 1 is odd and ged(a, m) = 1, then

k

(alm) = ] [(alps).

i=1
— Note that the Jacobi symbol equals +1.
— It reduces to the Legendre symbol when m is a prime.
e Define (a|1) = 1.
2Carl Jacobi (1804—-1851).
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for
arguments for which it is defined.

1. (ablm) = (a|m)(b|m).
2. (a|mimso) = (a|mq)(a|me).

. If a = bmod m, then (a|m) = (b|m).

3
4. (=1|m) = (=1)m=D/2 (by Lemma 64 on p. 486).

5. (2|m) = (=1)m —1)/8a

. If a and m are both odd, then
(a|m)(m|a) = (~1)te-Dim=D/A,

2By Lemma 64 (p. 486) and some parity arguments.
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Calculation of (2200[999)

Similar to the FEuclidean algorithm and does not require

factorization.

(202]999) = (—1)©?2°~D/8(101]999)
(—1)"2*7%(101]999) = (101|999)
(—1)(100998)/4(999|101) = (—1)%*°°(999|101)
(

(—

999[101) = (90[101) = (—1)T°¥*~D/8(45101)
1)*%7°(45|101) = —(45/101)

—(—1)DE00/4 (107 |45) = —(101]45) = —(11]45)

—(—=1)1OED/ 1 y5111) = —(45|11)

—(1]11) = —1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 66 The group of set ®(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,
p*, or 2pF for some nonnegative integer k and and odd

prime p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Test?®

Lemma 67 If (M|N) = MW=Y/2mod N for all
M € ®(N), then N is prime. (Assume N is odd.)

e Assume N = mp, where p is an odd prime, gcd(m, p) = 1,

and m > 1 (not necessarily prime).
o Let r € ®(p) such that (r|p) = —1.

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M = r mod p,
M = 1modm.

@Mr. Clement Hsiao (R88526067) pointed out that the textbook’s

proof for Lemma 11.8 is incorrect while he was a senior in January 1999.
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The Proof (continued)

e By the hypothesis,
MW=D/2 — (M| N) = (M|p)(M|m)=—1mod N.

e Hence
MWN-1/2 — _1 mod m.

e But because M = 1 mod m,
MWN=1/2 =1 mod m,

a contradiction.
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The Proof (continued)

e Second, assume that N = p®, where p is an odd prime
and a > 2.

e By Theorem 66 (p. 498), there exists a primitive root r

modulo p?.

e From the assumption,

2
MV = [M<N—1>/2] — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e Asr € ®(N) (prove it), we have

r =1 =1 mod N.

e As r’s exponent modulo N = p® is ¢(N)

pa—l(p_ 1)|N_ 17

which implies that p| N — 1.

e But this is impossible given that p| N.
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The Proof (continued)

Third, assume that N = mp®, where p is an odd prime,
ged(m,p) = 1, m > 1 (not necessarily prime), and a is

even.
The proof mimics that of the second case.

By Theorem 66 (p. 498), there exists a primitive root r
modulo p®.

From the assumption,

2
MV = [M<N—1>/2] — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e In particular,
MYN~1 =1 mod p* (7)

for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that
M r mod p°,
M 1 mod m.

e Because M = r mod p® and Eq. (7),

rV 71 =1 mod p®.
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The Proof (concluded)

e As r’s exponent modulo N = p® is ¢(IN)
pa—l(p o 1) | N — 17
which implies that p| N — 1.

e But this is impossible given that p| N.
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The Number of Witnesses to Compositeness

Theorem 68 (Solovay and Strassen (1977)) If N is an
odd composite, then (M|N) # MWN=1/2 mod N for at least
half of M € ®(N).

e By Lemma 67 (p. 499) there is at least one a € ®(V)

such that (a|N) # aN~1/2 mod N.

o Let B=1{by,ba,...,bi} C ®(N) be the set of all distinct
residues such that (b;|N) = bEN_l)/Q mod N.

e Let aB={ab;mod N :i=1,2,...,k}.
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The Proof (concluded)

e |aB|=k.
— ab; = ab; mod N implies N|a(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b,|.
e aB N B = () because

(abs) VD2 = gV TDEPNTII o (0] N (bs|N) = (abi| N).

e Combining the above two results, we know

1Bl _ 45
ON) —
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if N is even but N # 2 then
return “NN is composite”;
else if N = 2 then
return “N is a prime”;
end if
Pick M € {2,3,..., N — 1} randomly;
if gcd(M,N) > 1 then

return “N is a composite”;

1:
2:
3:
4:
:
6:
7
8:
9:

else
if (M|N)# MP~Y/2 mod N then

return “/N is composite”;

—_ =
= O

else

—_
o

return “N is a prime”;
end if
. end if

—_
A
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Analysis

The algorithm certainly runs in polynomial time.

There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is composite, it
is always correct.

The probability of a false negative is at most one half.

— If the input is composite, then the probability that

the algorithm says the number is a prime is < 0.5.

The error probability can be reduced but not eliminated.
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The Improved Density Attack for COMPOSITENESS

Withesses to

compositeness of Witnesses to
N via common compositeness of

factor N via Jacobi
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Randomized Complexity Classes; RP

e Let N be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.
e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If x € L, then at least half of the 2P(™) computation
paths of N on z halt with “yes” where n = |x|.

— If x ¢ L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo

TMs is denoted RP (randomized polynomial time).?

2Adleman and Manders (1977).
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Comments on RP
Nondeterministic steps can be seen as fair coin flips.
There are no false positive answers.
The probability of false negatives, 1 — €, is at most 0.5.

But any constant between 0 and 1 can replace 0.5.

— By repeating the algorithm k = [ — log;l_J times, the

probability of false negatives becomes (1 — €)* < 0.5.

In fact, € can be arbitrarily close to 0 as long as it is of

the order 1/p(n) for some polynomial p(n).
N _log211—e — O(%) - O<p<n))
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Where RP Fits

e PCRP C NP.

— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.

e COMPOSITENESS € RP; PRIMES € coRP; PRIMES € RP.?

— In fact, PRIMES € P.P

e RP U coRP is another “plausible” notion of efficient

computation.

2Adleman and Huang (1987).
b Agrawal, Kayal, and Saxena (2002).
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/PP? (Zero Probabilistic Polynomial)
The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false

negatives.

e If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

— A positive answer from the one without false

positives.

— A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L € ZPP.}
2: {IV; has no false positives, and N5 has no false
negatives. }

while true do
if Ni(z) = “yes” then

end if
if No(x) = “no” then

3:
4
5: return “yes”;
6
7
8 return “no”;

9: end if
10: end while
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/PP (concluded)

e The expected running time for the correct answer to

emerge is polynomial.

— The probability that a run of the 2 algorithms does
not generate a definite answer is 0.5.

— Let p(n) be the running time of each run.

— The expected running time for a definite answer is

ZO.5iip(n) = 2p(n).

e Essentially, ZPP is the class of problems that can be
solved without errors in expected polynomial time.
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Et Tu, RP?

: {Suppose L € RP.}
: {NV decides L without false positives.}

1

2

3: while true do

4: if N(z) = “yes” then
5: return “yes”;
6

7

8

end if
{But what to do here?}
: end while

e You eventually get a “yes” if x € L.
e But how to get a “no” when x & L7

e You have to sacrifice either correctness or bounded

running time.
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Large Deviations

Suppose you have a biased coin.

One side has probability 0.5 + € to appear and the other
0.5 — €, for some 0 < e < 0.5.

But you do not know which is which.

How to decide which side is the more likely—with high

confidence?

Answer: Flip the coin many times and pick the side that

appeared the most times.

Question: Can you quantify the confidence?
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The Chernoff Bound?®
Theorem 69 (Chernoff (1952)) Suppose x1,x3,...,T,

are independent random variables taking the values 1 and 0
with probabilities p and 1 — p, respectively. Let X = Z?’:l ;.
Then for all 0 <0 <1,

prob| X > (1+6)pn] < g0 /3,

e The probability that the deviate of a binomial

random variable from its expected value
n

E|X]|=E[) ._; x| = pn decreases exponentially with
the deviation.

e The Chernoff bound is asymptotically optimal.

2Herman Chernoff (1923-).
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The Proof

Let t be any positive real number.

Then

prob[ X > (1 + 0) pn] = prob[e!* > 1+ rn ],

Markov’s inequality (p. 460) generalized to real-valued
random variables says that

prob [ > kE[e"*]] < 1/k.

With k = et rn /Bl etX ] we have

prob[ X > (1 +0) pn] < e 1O rnpretX
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The Proof (continued)

e Because X =Y " | x; and z;’s are independent,
E[e" ] = (E[e™ )" = [1+p(e' —1)]™
e Substituting, we obtain

prob[ X > (1 +0)pn] < e "I [14pe’ —1)]"

t
e—t(1—|—0) pnepn(e —1)

as (1 4+ a)™ < e for all a > 0.
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The Proof (concluded)

e With the choice of t = In(1 + 8), the above becomes

prob[ X > (1 + 6) pn] < ePn[0-(1+0)In(140)]

e The exponent expands to —% + 0> _ % + - .- for

6
0 <60 <1, which is less than

1 6
<@ (-—-+7
<0*(-5+¢
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Power of the Majority Rule

From prob[ X < (1 —-0)pn]| < e~ (prove it):

Corollary 70 If p=(1/2) + € for some 0 < e < 1/2, then

prob [sz < n/2] < g€ /2

i=1
e The textbook’s corollary to Lemma 11.9 seems incorrect.
e Our original problem (p. 518) hence demands ~ 1.4k /¢

independent coin flips to guarantee making an error
with probability at most 2% with the majority rule.
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BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages for which there is
a precise polynomial-time NTM N such that:

— If x € L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

— If x ¢ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

e N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/47

e The number 3/4 bounds the probability of a right

answer away from 1/2.

e Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.

e In fact, 0.5 plus any inverse polynomial between 1/2 and
1,

1
0.5+ ——
p(n)

can be used.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + e.
fori=1,2,...,2k+ 1 do

Run N on input x;
end for

if “yes” is the majority answer then

44 79

yes g
else

“HO” ;

end if

1:
2:
3:
4:
5:
6:
7
8:
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Analysis

The running time remains polynomial, being 2k + 1

times N’s running time.

By Corollary 70 (p. 523), the probability of a false

. 2
answer is at most e~ € F.

By taking k = [ 2/€? ], the error probability is at most
1/4.

As with the RP case, € can be any inverse polynomial,

because k remains polynomial in n.
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Probability Amplification for BPP

e Let m be the number of random bits used by a BPP
algorithm.

— By definition, m is polynomial in n.

e With k£ = O(logm) in the majority vote algorithm, we
can lower the error probability to, say,

< (3m)~ %
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Aspects of BPP

BPP is the most comprehensive yet plausible notion of

efficient computation.

— If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

— In this aspect, BPP has effectively replaced P.

(RP UcoRP) C (NP U coNP).

(RP UcoRP) C BPP.
Whether BPP C (NP U coNP) is unknown.
But it is unlikely that NP C BPP (p. 544).
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coBPP

The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

An algorithm for L € BPP becomes one for L by

reversing the answer.

So L € BPP and BPP C coBPP.
Similarly coBPP C BPP.

Hence BPP = coBPP.

This approach does not work for RP.

It did not work for NP either.
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BPP and coBPP
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“The Good, the Bad, and the Ugly”
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Circuit Complexity

Circuit complexity is based on boolean circuits instead

of Turing machines.

A boolean circuit with n inputs computes a boolean

function of n variables.

By identify true with 1 and false with 0, a boolean
circuit with n inputs accepts certain strings in {0, 1 }™.

To relate circuits with arbitrary languages, we need one
circuit for each possible input length n.
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Formal Definitions
e The size of a circuit is the number of gates in it.

e A family of circuits is an infinite sequence
C = (Cyp, (1, ...) of boolean circuits, where C,, has n

boolean inputs.
e [ C{0,1}* has polynomial circuits if there is a family
of circuits C such that:

— The size of C), is at most p(n) for some fixed

polynomial p.

— For input = € {0,1}*, C|, outputs 1 if and only if
x € L.
x C, accepts LN {0,1}".

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 534



Exponential Circuits Contain All Languages

e Theorem 15 (p. 171) implies that there are languages

that cannot be solved by circuits of size 2™ /(2n).
e But exponential circuits can solve all problems.

Proposition 71 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2" 2.

e We will show that for any language L C {0, 1}%,
LN {0,1}" can be decided by a circuit of size 272,
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The Proof (concluded)
Define boolean function f : {0,1}"™ — {0, 1}, where

1 xi290---xy € L,

f(xle . :Un) p—
0 ziz0--2, & L.

flriza - xpn) = (x1 A f(lxa - xp)) V (mx1 A f(Ox2 - xp)).

The circuit size s(n) for f(zixs-- - x,) hence satisfies
s(n) =4+ 2s(n—1)

with s(1) = 1.

Solve it to obtain s(n) =5 x 2"~1 — 4 < 27+2,
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Comments

e Proposition 71 (p. 535) does not contradict anything we

knew so far about computation theory.

— Yes, there are only a finite number of circuits with

size 2712,
— Yes, there are only 2™ possible inputs of length n.
— Yes, those circuits can solve all problems of length n.

— But is there an algorithm to tell us which circuit is

the correct one?
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The Circuit Complexity of P

Proposition 72 All languages in P have polynomaial

circults.

e Let L € P be decided by a TM in time p(n).

e By Corollary 28 (p. 263), there is a circuit with
O(p(n)?) gates that accepts L N {0, 1}".

e The size of the circuit depends only on L and the length
of the input.

e The size of the circuit is polynomial in n.
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Languages That Polynomial Circuits Accept

e Do polynomial circuits accept only languages in P?
e There are undecidable languages that have polynomial
circuits.
Let L C {0,1}* be an undecidable language.
Let U = {1" : the binary expansion of n is in L}.*
U is also undecidable.

U N{1}"™ can be accepted by C,, that is trivially true
if 1™ € U and trivially false if 1™ ¢ U.
The family of circuits (Cy, C1,...) is polynomial in

size.

2 Assume n’s leading bit is always 1 without loss of generality.
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A Patch

e Despite the simplicity of a circuit, the previous
discussions imply the following;:

— Circuits are not a realistic model of computation.
— Polynomial circuits are not a plausible notion of

efficient computation.

e What gives?

e The effective and efficient constructibility of

Co,C1,....

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 540



Uniformity

e A family (Cy, C1,...) of circuits is uniform if there is a
log n-space bounded TM which on input 1™ outputs C,,.

— (Circuits now cannot accept undecidable languages
(why?).
— The circuit family on p. 539 is not constructible by a

single Turing machine (algorithm).

e A language has uniformly polynomial circuits if
there is a uniform family of polynomial circuits that
decide it.
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Uniformly Polynomial Circuits and P

Theorem 73 L € P if and only if L has uniformly

polynomial circuits.
e One direction was proved in Proposition 72 (p. 538).
e Now suppose L has uniformly polynomial circuits.

e Decide x € L in polynomial time as follows:
— Let n=|x].
— Build (), in logn space, hence polynomial time.

— Evaluate the circuit with input x in polynomial time.

e Therefore L € P.
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Relation to P vs. NP

e Theorem 73 implies that P = NP if and only if
NP-complete problems have no uniformly polynomial

circuits.

e A stronger conjecture: NP-complete problems have no

polynomial circuits, uniformly or not.

e The above is currently the preferred approach to proving
the P # NP conjecture—without success so far.
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