
Function Problems Are Not Harder than Decision
Problems If P = NP

Theorem 57 Suppose that P = NP. Then, for every NP
language L there exists a polynomial-time TM B that on
input x ∈ L outputs a certificate for x.

• We are looking for a certificate in the sense of
Proposition 31 (p. 274).

• That is, a certificate y for every x ∈ L such that

(x, y) ∈ R,

where R is a polynomially decidable and polynomially
balanced relation.
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The Proof (concluded)

• Recall the algorithm for fsat on p. 428.

• The reduction of Cook’s Theorem L to sat is a Levin
reduction (p. 278).

• So there is a polynomial-time computable function R

such that x ∈ L iff R(x) ∈ sat.

• In fact, more is true: R maps a satisfying assignment of
R(x) into a certificate for x.

• Therefore, we can use the algorithm for fsat to come up
with an assignment for R(x) and then map it back into
a certificate for x.
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Randomized Computation
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I know that half my advertising works,
I just don’t know which half.

— John Wanamaker

I know that half my advertising is
a waste of money,

I just don’t know which half!
— McGraw-Hill ad.
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Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no
known efficient deterministic algorithms but for which
very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.
aRabin (1976); Solovay and Strassen (1977).
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“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).
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Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V, E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all ui ∈ U .
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A Perfect Matching
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Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a variable xij if (ui, vj) ∈ E and zero otherwise.
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Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑

π

sgn(π)
n∏

i=1

AG
i,π(i). (5)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of
transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such
that i < j) and π(i) > π(j) is even.a

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.
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Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 AG
i,π(i), note the following:

– Each summand corresponds to a possible perfect
matching π.

– As all variables appear only once, all of these
summands are different monomials and will not
cancel.

• It is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect
matching if and only if det(AG) is not identically zero.
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A Perfect Matching in a Bipartite Graph
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The Perfect Matching in the Determinant

• The matrix is

AG =




0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55




.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +
x14x22x31x43x55 − x13x22x31x44x55, each denoting a
perfect matching.
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How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• There are exponentially many terms in det(AG).

• Expanding the determinant polynomial is not feasible.

– Too many terms.

• Observation: If det(AG) is identically zero, then it
remains zero if we substitute arbitrary integers for the
variables x11, . . . , xnn.

• What is the likelihood of obtaining a zero when det(AG)
is not identically zero?
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Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let p(x1, x2, . . . , xm) 6≡ 0
be a polynomial in m variables each of degree at most d. Let
M ∈ Z+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).
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Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (6)

• So suppose p(x1, x2, . . . , xm) 6≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . , M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control.
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Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) 6≡ 0.

1: Choose i1, . . . , im from {0, 1, . . . ,M − 1} randomly;
2: if p(i1, i2, . . . , im) 6= 0 then
3: return “p is not identically zero”;
4: else
5: return “p is identically zero”;
6: end if
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A Randomized Bipartite Perfect Matching Algorithma

We now return to the original problem of bipartite perfect
matching.

1: Choose n2 integers i11, . . . , inn from {0, 1, . . . , 2n2 − 1}
randomly;

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;
3: if det(AG(i11, . . . , inn)) 6= 0 then
4: return “G has a perfect matching”;
5: else
6: return “G has no perfect matchings”;
7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”
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Analysis

• If G has no perfect matchings, the algorithm will always
be correct.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with
probability at most n2d/(2n2) = 0.5 with d = 1 in
Eq. (6) on p. 448.

– Run the algorithm independently k times and output
“G has no perfect matchings” if they all say no.

– The error probability is now reduced to at most 2−k.

• Is there an (i11, . . . , inn) that will always give correct
answers for all bipartite graphs of 2n nodes?a

aThanks to a lively class discussion on November 24, 2004.
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Analysis (concluded)a

• Note that we are calculating

prob[ algorithm answers “yes” |G has a perfect matching ],

prob[ algorithm answers “no” |G has no perfect matchings ].

• We are not calculating

prob[G has a perfect matching | algorithm answers “yes” ],

prob[G has no perfect matchings | algorithm answers “no” ].

aThanks to a lively class discussion on May 1, 2008.
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Lószló Lovász (1948–)
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Perfect Matching for General Graphs

• Page 439 is about bipartite perfect matching

• Now we are given a graph G = (V, E).

– V = {v1, v2, . . . , v2n}.
• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , 2n} such that

(vi, vπ(i)) ∈ E

for all vi ∈ V .
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The Tutte Matrixa

• Given a graph G = (V,E), construct the 2n× 2n Tutte
matrix TG such that

TG
ij =





xij if (vi, vj) ∈ E and i < j,

−xij if (vi, vj) ∈ E and i > j,

0 othersie.

• The Tutte matrix is a skew-symmetric symbolic matrix.

• Similar to Proposition 58 (p. 443):

Proposition 60 G has a perfect matching if and only if
det(TG) is not identically zero.

aWilliam Thomas Tutte (1917–2002).
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William Thomas Tutte (1917–2002)
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Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is
called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is
always correct (no false positives).

– If the algorithm answers in the negative, then it may
make an error (false negative).

aMetropolis and Ulam (1949).
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Monte Carlo Algorithms (concluded)

• The algorithm makes a false negative with probability
≤ 0.5.

– Note this probability refers to

prob[ algorithm answers “no” |G has a perfect matching ].

• This probability is not over the space of all graphs or
determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.
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False Positives and False Negatives in Human
Behavior?a

• “[Men] tend to misinterpret innocent friendliness as a
sign that women are [· · · ] interested in them.”

– A false positive.

• “[Women] tend to undervalue signs that a man is
interested in a committed relationship.”

– A false negative.
a“Don’t misunderestimate yourself.” The Economist, 2006.
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The Markov Inequalitya

Lemma 61 Let x be a random variable taking nonnegative
integer values. Then for any k > 0,

prob[x ≥ kE[ x ]] ≤ 1/k.

• Let pi denote the probability that x = i.

E[x ] =
∑

i

ipi

=
∑

i<kE[ x ]

ipi +
∑

i≥kE[ x ]

ipi

≥ kE[ x ]× prob[x ≥ kE[ x ]].

aAndrei Andreyevich Markov (1856–1922).
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Andrei Andreyevich Markov (1856–1922)
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An Application of Markov’s Inequality

• Algorithm C runs in expected time T (n) and always
gives the right answer.

• Consider an algorithm that runs C for time kT (n) and
rejects the input if C does not stop within the time
bound.

• By Markov’s inequality, this new algorithm runs in time
kT (n) and gives the wrong answer with probability
≤ 1/k.

• By running this algorithm m times, we reduce the error
probability to ≤ k−m.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 462



An Application of Markov’s Inequality (concluded)

• Suppose, instead, we run the algorithm for the same
running time mkT (n) once and rejects the input if it
does not stop within the time bound.

• By Markov’s inequality, this new algorithm gives the
wrong answer with probability ≤ 1/(mk).

• This is a far cry from the previous algorithm’s error
probability of ≤ k−m.

• The loss comes from the fact that Markov’s inequality
does not take advantage of any specific feature of the
random variable.
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fsat for k-sat Formulas (p. 427)

• Let φ(x1, x2, . . . , xn) be a k-sat formula.

• If φ is satisfiable, then return a satisfying truth
assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this
problem.
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A Random Walk Algorithm for φ in CNF Form

1: Start with an arbitrary truth assignment T ;
2: for i = 1, 2, . . . , r do
3: if T |= φ then
4: return “φ is satisfiable with T”;
5: else
6: Let c be an unsatisfiable clause in φ under T ; {All

of its literals are false under T .}
7: Pick any x of these literals at random;
8: Modify T to make x true;
9: end if

10: end for
11: return “φ is unsatisfiable”;

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 465



3sat vs. 2sat Again

• Note that if φ is unsatisfiable, the algorithm will not
refute it.

• The random walk algorithm needs expected exponential
time for 3sat.

– In fact, it runs in expected O((1.333 · · ·+ ε)n) time
with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art as of 2006 is expected O(1.322n)
time for 3sat and expected O(1.474n) time for 4sat.c

aUse this setting per run of the algorithm.
bSchöning (1999).
cKwama and Tamaki (2004); Rolf (2006).
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Random Walk Works for 2sata

Theorem 62 Suppose the random walk algorithm with
r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be
discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= φ.

• Let t(i) denote the expected number of repetitions of the
flipping step until a satisfying truth assignment is found
if our starting T differs from T̂ in i values.

– Their Hamming distance is i.
aPapadimitriou (1991).
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The Proof

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= φ.

• If T 6= T̂ or T is not equal to any other satisfying truth
assignment, then we need to flip at least once.

• We flip to pick among the 2 literals of a clause not
satisfied by the present T .

• At least one of the 2 literals is true under T̂ because T̂

satisfies all clauses.

• So we have at least 0.5 chance of moving closer to T̂ .
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The Proof (continued)

• Thus

t(i) ≤ t(i− 1) + t(i + 1)
2

+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ
from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n− 1) + 1

because at i = n, we can only decrease i.
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The Proof (continued)

• As we are only interested in upper bounds, we solve

x(0) = 0

x(n) = x(n− 1) + 1

x(i) =
x(i− 1) + x(i + 1)

2
+ 1, 0 < i < n

• This is one-dimensional random walk with a reflecting
and an absorbing barrier.
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The Proof (continued)

• Add the equations up to obtain

x(1) + x(2) + · · ·+ x(n)

=
x(0) + x(1) + 2x(2) + · · ·+ 2x(n− 2) + x(n− 1) + x(n)

2
+n + x(n− 1).

• Simplify to yield

x(1) + x(n)− x(n− 1)
2

= n.

• As x(n)− x(n− 1) = 1, we have

x(1) = 2n− 1.
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The Proof (continued)

• Iteratively, we obtain

x(2) = 4n− 4,

...

x(i) = 2in− i2.

• The worst case happens when i = n, in which case

x(n) = n2.
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The Proof (concluded)

• We therefore reach the conclusion that

t(i) ≤ x(i) ≤ x(n) = n2.

• So the expected number of steps is at most n2.

• The algorithm picks a running time 2n2.

• This amounts to invoking the Markov inequality (p. 460)
with k = 2, with the consequence of having a probability
of 0.5.

• The proof does not yield a polynomial bound for 3sat.a

aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8,

2006.
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Boosting the Performance

• We can pick r = 2mn2 to have an error probability of
≤ (2m)−1 by Markov’s inequality.

• Alternatively, with the same running time, we can run
the “r = 2n2” algorithm m times.

• But the error probability is reduced to ≤ 2−m!

• Again, the gain comes from the fact that Markov’s
inequality does not take advantage of any specific
feature of the random variable.

• The gain also comes from the fact that the two
algorithms are different.
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Primality Tests

• primes asks if a number N is a prime.

• The classic algorithm tests if k |N for k = 2, 3, . . . ,
√

N .

• But it runs in Ω(2n/2) steps, where n = |N | = log2 N .
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The Density Attack for primes

1: Pick k ∈ {2, . . . , N − 1} randomly; {Assume N > 2.}
2: if k |N then
3: return “N is composite”;
4: else
5: return “N is a prime”;
6: end if
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Analysisa

• Suppose N = PQ, a product of 2 primes.

• The probability of success is

< 1− φ(N)
N

= 1− (P − 1)(Q− 1)
PQ

=
P + Q− 1

PQ
.

• In the case where P ≈ Q, this probability becomes

<
1
P

+
1
Q
≈ 2√

N
.

• This probability is exponentially small.
aSee also p. 410.
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The Fermat Test for Primality

Fermat’s “little” theorem on p. 412 suggests the following
primality test for any given number p:

1: Pick a number a randomly from {1, 2, . . . , N − 1};
2: if aN−1 6= 1 mod N then
3: return “N is composite”;
4: else
5: return “N is a prime”;
6: end if

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 478



The Fermat Test for Primality (concluded)

• Unfortunately, there are composite numbers called
Carmichael numbers that will pass the Fermat test
for all a ∈ {1, 2, . . . , N − 1}.a

• There are infinitely many Carmichael numbers.b

• In fact, the number of Carmichael numbers less than n

exceeds n2/7 for n large enough.
aCarmichael (1910).
bAlford, Granville, and Pomerance (1992).
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Square Roots Modulo a Prime

• Equation x2 = a mod p has at most two (distinct) roots
by Lemma 56 (p. 417).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are
called quadratic residues.

∗ They are 12 mod p, 22 mod p, . . . , (p− 1)2 mod p.

• We shall show that a number either has two roots or has
none, and testing which one is true is trivial.

• There are no known efficient deterministic algorithms to
find the roots, however.
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Euler’s Test

Lemma 63 (Euler) Let p be an odd prime and
a 6= 0 mod p.

1. If a(p−1)/2 = 1 mod p, then x2 = a mod p has two roots.

2. If a(p−1)/2 6= 1 mod p, then a(p−1)/2 = −1 mod p and
x2 = a mod p has no roots.

• Let r be a primitive root of p.

• By Fermat’s “little” theorem, r(p−1)/2 is a square root of
1, so r(p−1)/2 = 1 mod p or r(p−1)/2 = −1 mod p.

• But as r is a primitive root, r(p−1)/2 6= 1 mod p.

• Hence r(p−1)/2 = −1 mod p.
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The Proof (continued)

• Let a = rk mod p for some k.

• Then

1 = a(p−1)/2 = rk(p−1)/2 =
[
r(p−1)/2

]k

= (−1)k mod p.

• So k must be even.

• Suppose a = r2j for some 1 ≤ j ≤ (p− 1)/2.

• Then a(p−1)/2 = rj(p−1) = 1 mod p and its two distinct
roots are rj ,−rj(= rj+(p−1)/2 mod p).

– If rj = −rj mod p, then 2rj = 0 mod p, which implies
rj = 0 mod p, a contradiction.
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The Proof (continued)

• As 1 ≤ j ≤ (p− 1)/2, there are (p− 1)/2 such a’s.

• Each such a has 2 distinct square roots.

• The square roots of all the a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is {1, 2, . . . , p− 1}.
– Because there are (p− 1)/2 such a’s and each a has

two square roots.

• As a result, a = r2j , 1 ≤ j ≤ (p− 1)/2, are all the
quadratic residues.
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The Proof (concluded)

• If a = r2j+1, then it has no roots because all the square
roots have been taken.

• Now,

a(p−1)/2 =
[
r(p−1)/2

]2j+1

= (−1)2j+1 = −1 mod p.
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The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 63 (p. 481) a(p−1)/2 mod p = ±1 for
a 6= 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) =





0 if p | a,

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

• Euler’s test implies a(p−1)/2 = (a | p) mod p for any odd
prime p and any integer a.

• Note that (ab|p) = (a|p)(b|p).

aAndrien-Marie Legendre (1752–1833).
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Gauss’s Lemma

Lemma 64 (Gauss) Let p and q be two odd primes. Then
(q|p) = (−1)m, where m is the number of residues in
R = { iq mod p : 1 ≤ i ≤ (p− 1)/2 } that are greater than
(p− 1)/2.

• All residues in R are distinct.

– If iq = jq mod p, then p|(j − i) q or p|q.
• No two elements of R add up to p.

– If iq + jq = 0 mod p, then p|(i + j) or p|q.
– But neither is possible.
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The Proof (continued)

• Consider the set R′ of residues that result from R if we
replace each of the m elements a ∈ R such that
a > (p− 1)/2 by p− a.

– This is equivalent to performing −a mod p.

• All residues in R′ are now at most (p− 1)/2.

• In fact, R′ = {1, 2, . . . , (p− 1)/2} (see illustration next
page).

– Otherwise, two elements of R would add up to p,
which has been shown to be impossible.
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p = 7 and q = 5.
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The Proof (concluded)

• Alternatively, R′ = {±iq mod p : 1 ≤ i ≤ (p− 1)/2},
where exactly m of the elements have the minus sign.

• Take the product of all elements in the two
representations of R′.

• So [(p− 1)/2]! = (−1)mq(p−1)/2[(p− 1)/2]! mod p.

• Because gcd([(p− 1)/2]!, p) = 1, the above implies

1 = (−1)mq(p−1)/2 mod p.
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