The Primality Problem

An integer p is prime if p > 1 and all positive numbers
other than 1 and p itself cannot divide it.

PRIMES asks if an integer IV is a prime number.

Dividing N by 2,3,...,VN is not efficient.

— The length of N is only log N, but /N = 20-5loe N

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxena!

We will focus on efficient “probabilistic” algorithms for
PRIMES (used in Mathematica, e.g.).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 393

if n = a® for some a,b > 1 then

return “composite”;
end if
forr=2,3,...,n—1do

if gcd(n,r) > 1 then

return “composite”;
end if
if r is a prime then

Let g be the largest prime factor of r — 1;
if ¢ > 4y/Tlogn and n{""1/9 £ 1 mod r then

break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 4y/rlogn.}
: fora=1,2,...,2y/rlogn do
if (x —a)™ # (2™ —a) mod (" — 1) in Z,,[z] then
return “composite”;
end if
: end for
: return “prime”; {The only place with “prime” output.}

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 394

The Primality Problem (concluded)

e NP N coNP is the class of problems that have succinct
certificates and succinct disqualifications.

— Each “yes” instance has a succinct certificate.
— Each “no” instance has a succinct disqualification.

— No instances have both.

e We will see that PRIMES € NP N coNP.

— In fact, PRIMES € P as mentioned earlier.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 395

Primitive Roots in Finite Fields

Theorem 48 (Lucas and Lehmer (1927)) * A number
p > 1 1s prime if and only if there is a number 1 <r <p
(called the primitive root or generator) such that

1. Y»71 =1 mod p, and

2. rP=1/a £ 1 mod p for all prime divisors q¢ of p — 1.

e We will prove the theorem later.

2Francois Edouard Anatole Lucas (1842-1891); Derrick Henry
Lehmer (1905-1991).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 396

Derrick Lehmer (1905-1991)

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 397

Pratt's Theorem

Theorem 49 (Pratt (1975)) PRIMES € NP N coNP.

e PRIMES is in coNP because a succinct disqualification is

a divisor.
e Suppose p is a prime.

e p’s certificate includes the 7 in Theorem 48 (p. 396).

e Use recursive doubling to check if 7P~ =1 mod p in

time polynomial in the length of the input, log, p.

— r,r2,rt, ... mod p, a total of ~ log, p steps.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 398

The Proof (concluded)

We also need all prime divisors of p — 1: q1,qo, ..., qk.
Checking rP~1)/4% £ 1 mod p is also easy.

Checking q1, qo, ..., q. are all the divisors of p — 1 is easy.
We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:

C(p) — (’I"; qi1, O(Q1)7 qz2, C(QQ)v ooy 4k, C(Qk))

C'(p) can also be checked in polynomial time.

We next prove that C(p) is succinct.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 399

The Succinctness of the Certificate

Lemma 50 The length of C(p) is at most quadratic at

51og3 p.

e This claim holds when p =2 or p = 3.

e In general, p — 1 has k£ < log, p prime divisors
q1 — 27Q27"'7Qk‘
— Reason: 2F < Hle g <p-—1.

e ('(p) requires: 2 parentheses and 2k < 2log, p separators
(length at most 2log, p long), r (length at most log, p),
g1 = 2 and its certificate 1 (length at most 5 bits), the
q;’s (length at most 2log, p), and the C'(g;)s.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 400

The Proof (concluded)

e ('(p) is succinct because, by induction,

k
C(p)] < 5logyp+5+5)» logsg
1 =2

2
k
5logyp+5+5 (Z log, qz-)

i=2
— 1
5log2p+5+5log2pT

510gy p + 5+ 5(logy p — 1)°
5logsp + 10 — 5log, p < 5logs p

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 401

A Certificate for 232

As 7 is a primitive root modulo 23 and 22 = 2 x 11, so
C'(23) =(7,2,C(2),11,C(11)).
As 2 is a primitive root modulo 11 and 10 =2 X 5, so

C(11) = (2,2,C(2),5,C(5)).

As 2 is a primitive root modulo 5 and 4 = 22, so

C'(5) =(2,2,C(2)).
In summary,

C(23) = (7,2,0(2),11, (2,2,C(2), 5, (2,2,C(2)))).

aThanks to a lively discussion on April 24, 2008.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 402

Basic Modular Arithmetics®
Let m,n € Z*.
m|n means m divides n and m is n’s divisor.

We call the numbers 0,1,...,n — 1 the residue modulo

n.

The greatest common divisor of m and n is denoted

ged(m,n).

The r in Theorem 48 (p. 396) is a primitive root of p.

We now prove the existence of primitive roots and then
Theorem 48.

@(Carl Friedrich Gauss.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 403

Euler's® Totient or Phi Function

Let
O(n)={m:1<m<n,ged(m,n) =1}

be the set of all positive integers less than n that are

prime to n (Z is a more popular notation).
— $(12) = {1,5,7,11}.

Define Euler’s function of n to be ¢(n) = |®(n)].

¢(p) = p — 1 for prime p, and ¢(1) = 1 by convention.

Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 404

eulerphi.nb

400 .

300 L.

200 7 . . : . oo, . e ,..' .'0 :'.'::"'..'.’0'0 .
: 00' 0': Seo o’ y * ~'.’ e . * o.

100 ## e o e I T D

200 300 400 500

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 405

Two Properties of Euler's Function

The inclusion-exclusion principle* can be used to prove the
following.

Lemma 51 ¢(n)=n][,, (1 - %)

€e

o If n=pi'ps?---pi* is the prime factorization of n, then

¢(n)—n7f[1<1—p1i).

Corollary 52 ¢(mn) = ¢(m) ¢(n) if ged(m,n) = 1.

aSee my Discrete Mathematics lecture notes.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 406

A Key Lemma
Lemma 53) . &(m)=n.

o Let Hle p,]fi be the prime factorization of n and consider

14

[116() + o) + -+ o(0f")] (4)
i=1
e Equation (4) equals n because ¢(pf) = p¥ — p,’f_l by

Lemma 51.

e Expand Eq. (4) to yield

J4
S T o).

K, <ki,...,k,<kgi=1

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 407

The Proof (concluded)
By Corollary 52 (p. 406),

So Eq. (4) becomes

=

k! <ki,....k) <k

1=1

/

l k, Y .
Each [[,_; p;* is a unique divisor of n = [],_; pfz.

Equation (4) becomes

> é(m).

m|n

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 408

The Density Attack for PRIMES

e It works, but does it work well?

e The ratio of numbers < n relatively prime to n (the
white area) is ¢(n)/n.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 409

The Density Attack for PRIMES (concluded)

e When n = pqg, where p and ¢ are distinct primes,

—p—q+1 1 1
¢(n) _pg—p—gq+l . 1 1

n pq qg P

e So the ratio of numbers < n not relatively prime to n
(the grey area) is < (1/q) + (1/p).
— The “density attack” has probability < 2/y/n of
factoring n = pg when p ~ ¢ = O(y/n).
— The “density attack” to factor n = pq hence takes
Q(y/n) steps on average when p ~ g = O({/n).

— This running time is exponential: (29-510827),

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 410

The Chinese Remainder Theorem

e Let n =nyns---ni, where n; are pairwise relatively

prime.

e For any integers ai,as,...,ax, the set of simultaneous

equations

a1 mod nq,

as mod ng,

X ar, mod nyg,

has a unique solution modulo n for the unknown =.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 411

Fermat's “Little” Theorem?
Lemma 54 For all0 < a < p, a»~! =1 mod p.

e Consider a®(p) = {am mod p: m € ®(p)}.

e ad(p) =

O(p).
— a®(p) C ®(p) as a remainder must be between 0 and

p— 1.
— Suppose am = am’ mod p for m > m’, where
m, m’ € ®(p).

— That means a(m —m’) = 0 mod p, and p divides a or

m — m’, which is impossible.

2Pierre de Fermat (1601-1665).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 412

The Proof (concluded)
Multiply all the numbers in ®(p) to yield (p — 1)!.

Multiply all the numbers in a®(p) to yield a?~1(p — 1)!.

As a®(p) = ®(p), a1 (p —1)! = (p — 1)! mod p.

Finally, a?~! = 1 mod p because p f(p — 1)!.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 413

The Fermat-Euler Theorem?

Corollary 55 For all a € ®(n), a®™ =1 mod n.

e The proof is similar to that of Lemma 54 (p. 412).
e Consider a®(n) = {am mod n : m € ®(n)}.
e aP(n) = d(n).
— a®(n) C ®(n) as a remainder must be between 0 and
n — 1 and relatively prime to n.

— Suppose am = am’ mod n for m’ < m < n, where
m,m’ € ®(n).
— That means a(m —m') = 0 mod n, and n divides a or

m — m/, which is impossible.

2Proof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 414

The Proof (concluded)

Multiply all the numbers in ®(n) to yield | [,,cq(,) m-

Multiply all the numbers in a®(n) to yield
OJCI)(n) HmE@(n) m.

As a®(n) = ®(n),

H m = a2 H m | mod n.

med(n) med(n)

Finally, a®™ = 1 mod n because n } [Lnesm) m

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 415

An Example

o As 12 =22%x 3,

$(12) = 12 x (1—%) (1-%):4.

o In fact, ®(12) = {1,5,7,11}.

e For example,
5% = 625 = 1 mod 12.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 416

Exponents

e The exponent of m € ®(p) is the least k € Z™ such that
mF =1 mod p.

e Every residue s € ®(p) has an exponent.

— 1,s,5°%, 5%, ... eventually repeats itself modulo p, say

s = s7 mod p, which means s/~* = 1 mod p.

e If the exponent of m is k and m® = 1 mod p, then k|/.

— Otherwise, { = gk + a for 0 < a < k, and

mt = ma+te = m? = 1 mod p, a contradiction.

Lemma 56 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 417

Exponents and Primitive Roots

From Fermat’s “little” theorem, all exponents divide
p— 1.
A primitive root of p is thus a number with exponent
p— 1.
Let R(k) denote the total number of residues in ®(p)

that have exponent k.
We already knew that R(k) =0 for & f(p — 1).
S0

as every number has an exponent.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 418

Size of R(k)

Any a € ®(p) of exponent k satisfies ¥ = 1 mod p.

Hence there are at most k£ residues of exponent k, i.e.,
R(k) < k, by Lemma 56 (p. 417).

Let s be a residue of exponent k.

1,s,s2,...,s" 1 are distinct modulo p.

— Otherwise, s* = s/ mod p with i < j.
— Then s7* = 1 mod p with j — i < k, a contradiction.

As all these k distinct numbers satisfy 2¥ = 1 mod p,
they comprise all solutions of ¥ = 1 mod p.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 419

Size of R(k) (continued)
But do all of them have exponent k (i.e., R(k) = k)?
And if not (i.e., R(k) < k), how many of them do?
Suppose ¢ < k and ¢ ¢ ®(k) with ged(l, k) =d > 1.
Then

(s9)k/4 = (s¥)¢/4 = 1 mod p.

Therefore, s* has exponent at most k/d, which is less
than k.

We conclude that

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 420

Size of R(k) (concluded)

Because all p — 1 residues have an exponent,
p—1= > Rk)< Y ¢k =p-1
k|(p—1) k[(p—1)

by Lemma 52 (p. 406).

Hence
o(k) when k|(p— 1)

0 otherwise

R(k)

In particular, R(p —1) = ¢(p — 1) > 0, and p has at least

one primitive root.

This proves one direction of Theorem 48 (p. 396).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 421

A Few Calculations
Let p = 13.
From p. 414, we know ¢(p — 1) = 4.
Hence R(12) = 4.
Indeed, there are 4 primitive roots of p.

As ®(p—1) ={1,5,7,11}, the primitive roots are

g',9°, 97, g'! for any primitive root g.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 422

The Other Direction of Theorem 48 (p. 396)

We must show p is a prime only if there is a number r

(called primitive root) such that
1. »=!1 =1 mod p, and

2. r(P=1/4 £ 1 mod p for all prime divisors ¢ of p — 1.
Suppose p is not a prime.

We proceed to show that no primitive roots exist.
Suppose ! = 1 mod p (note ged(r,p) = 1).

We will show that the 2nd condition must be violated.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 423

The Proof (concluded)
r?(P) = 1 mod p by the Fermat-Euler theorem (p. 414).

Because p is not a prime, ¢(p) < p — 1.

Let k be the smallest integer such that ¥ = 1 mod p.
Note that k| ¢(p) (p. 417).

As k< o(p), k<p-—1.

Let ¢ be a prime divisor of (p — 1)/k > 1.

Then k|(p —1)/q.

Therefore, by virtue of the definition of k,
rP=1)/4 — 1 mod .

But this violates the 2nd condition.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 424

Function Problems

Decisions problem are yes/no problems (SAT, TSP (D),
etc.).

Function problems require a solution (a satisfying

truth assignment, a best TSP tour, etc.).

Optimization problems are clearly function problems.

What is the relation between function and decision

problems?

Which one is harder?

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 425

Function Problems Cannot Be Easier than Decision
Problems

e If we know how to generate a solution, we can solve the
corresponding decision problem.

— If you can find a satisfying truth assignment
efficiently, then SAT is in P.

— If you can find the best TSP tour efficiently, then TSP
(D) is in P.

e But decision problems can be as hard as the

corresponding function problems.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 426

FSAT

e FSAT is this function problem:

— Let ¢(x1,22,...,2,) be a boolean expression.

— If ¢ is satisfiable, then return a satisfying truth
assignment.

— Otherwise, return “no.”

e We next show that if SAT € P, then FSAT has a
polynomial-time algorithm.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 427

An Algorithm for FSAT Using SAT
t:= ¢
: if ¢ € sAT then
for:=1,2,...,ndo
if ¢[x; = true] € SAT then
t:=tU{x; =true};
¢ = ¢[x; = true];
else
t:=tU{x; = false };
¢ = ¢|x; = false];
end if
end for

1:
2

3:
4:
D:
6:
7
8:
9:

_ =
= O

12: return t;

13: else

14: return “no”;
15: end if

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 428

Analysis

There are < n + 1 calls to the algorithm for saT.?

Shorter boolean expressions than ¢ are used in each call
to the algorithm for SAT.

So if SAT can be solved in polynomial time, so can FSAT.

e Hence SAT and FSAT are equally hard (or easy).

2Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 429

TSP and TSP (D) Revisited

We are given n cities 1,2, ...,n and integer distances

d;; = dj; between any two cities ¢ and j.

TSP asks for a tour with the shortest total distance (not

just the shortest total distance, as earlier).

— The shortest total distance must be at most 2/ % |,

where x is the input.
+ It is at most), - dj.

TSP (D) asks if there is a tour with a total distance at

most B.

We next show that if TSP (D) € P, then TSP has a

polynomial-time algorithm.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 430

An Algorithm for TSP Using TSP (D)

. Perform a binary search over interval [0,2/?!] by calling

TSP (D) to obtain the shortest distance, C'

. fori,7=1,2,...,ndo
Call Tsp (D) with B = C and d;; = C' 4 1;
if “no” then

Restore d;; to old value; {Edge |1, 7] is critical. }

end if

. end for

: return the tour with edges whose d;; < C;

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 431

Analysis

An edge that is not on any optimal tour will be
eliminated, with its d;; set to C' + 1.

An edge which is not on all remaining optimal tours will

also be eliminated.

So the algorithm ends with n edges which are not

eliminated (why?).

There are O(| 2| +n?) calls to the algorithm for TSP (D).

So if TSP (D) can be solved in polynomial time, so can
TSP.

Hence TSP (D) and TSP are equally hard (or easy).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 432

