
The Primality Problem

• An integer p is prime if p > 1 and all positive numbers
other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√

N is not efficient.

– The length of N is only log N , but
√

N = 20.5 log N .

• A polynomial-time algorithm for primes was not found
until 2002 by Agrawal, Kayal, and Saxena!

• We will focus on efficient “probabilistic” algorithms for
primes (used in Mathematica, e.g.).
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1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n− 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√

r log n and n(r−1)/q 6= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√

r log n.}
15: for a = 1, 2, . . . , 2

√
r log n do

16: if (x− a)n 6= (xn − a) mod (xr − 1) in Zn[ x ] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}
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The Primality Problem (concluded)

• NP ∩ coNP is the class of problems that have succinct
certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.

– In fact, primes ∈ P as mentioned earlier.
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Primitive Roots in Finite Fields

Theorem 48 (Lucas and Lehmer (1927)) a A number
p > 1 is prime if and only if there is a number 1 < r < p

(called the primitive root or generator) such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q 6= 1 mod p for all prime divisors q of p− 1.

• We will prove the theorem later.
aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).
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Derrick Lehmer (1905–1991)
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Pratt’s Theorem

Theorem 49 (Pratt (1975)) primes ∈ NP ∩ coNP.

• primes is in coNP because a succinct disqualification is
a divisor.

• Suppose p is a prime.

• p’s certificate includes the r in Theorem 48 (p. 396).

• Use recursive doubling to check if rp−1 = 1 mod p in
time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.
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The Proof (concluded)

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

• Checking r(p−1)/qi 6= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)).

• C(p) can also be checked in polynomial time.

• We next prove that C(p) is succinct.
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The Succinctness of the Certificate

Lemma 50 The length of C(p) is at most quadratic at
5 log2

2 p.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors
q1 = 2, q2, . . . , qk.

– Reason: 2k ≤ ∏k
i=1 qi ≤ p− 1.

• C(p) requires: 2 parentheses and 2k < 2 log2 p separators
(length at most 2 log2 p long), r (length at most log2 p),
q1 = 2 and its certificate 1 (length at most 5 bits), the
qi’s (length at most 2 log2 p), and the C(qi)s.
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The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p)| ≤ 5 log2 p + 5 + 5
k∑

i=2

log2
2 qi

≤ 5 log2 p + 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p + 5 + 5 log2
2

p− 1
2

< 5 log2 p + 5 + 5(log2 p− 1)2

= 5 log2
2 p + 10− 5 log2 p ≤ 5 log2

2 p

for p ≥ 4.
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A Certificate for 23a

• As 7 is a primitive root modulo 23 and 22 = 2× 11, so

C(23) = (7, 2, C(2), 11, C(11)).

• As 2 is a primitive root modulo 11 and 10 = 2× 5, so

C(11) = (2, 2, C(2), 5, C(5)).

• As 2 is a primitive root modulo 5 and 4 = 22, so

C(5) = (2, 2, C(2)).

• In summary,

C(23) = (7, 2, C(2), 11, (2, 2, C(2), 5, (2, 2, C(2)))).

aThanks to a lively discussion on April 24, 2008.
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Basic Modular Arithmeticsa

• Let m,n ∈ Z+.

• m|n means m divides n and m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo
n.

• The greatest common divisor of m and n is denoted
gcd(m,n).

• The r in Theorem 48 (p. 396) is a primitive root of p.

• We now prove the existence of primitive roots and then
Theorem 48.

aCarl Friedrich Gauss.
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Euler’sa Totient or Phi Function

• Let
Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1}

be the set of all positive integers less than n that are
prime to n (Z∗n is a more popular notation).

– Φ(12) = {1, 5, 7, 11}.
• Define Euler’s function of n to be φ(n) = |Φ(n)|.
• φ(p) = p− 1 for prime p, and φ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute
without knowing n’s factorization.

aLeonhard Euler (1707–1783).
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Two Properties of Euler’s Function

The inclusion-exclusion principlea can be used to prove the
following.

Lemma 51 φ(n) = n
∏

p|n(1− 1
p ).

• If n = pe1
1 pe2

2 · · · pe`
t is the prime factorization of n, then

φ(n) = n
∏̀

i=1

(
1− 1

pi

)
.

Corollary 52 φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.
aSee my Discrete Mathematics lecture notes.
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A Key Lemma

Lemma 53
∑

m|n φ(m) = n.

• Let
∏`

i=1 pki
i be the prime factorization of n and consider

∏̀

i=1

[ φ(1) + φ(pi) + · · ·+ φ(pki
i ) ]. (4)

• Equation (4) equals n because φ(pk
i ) = pk

i − pk−1
i by

Lemma 51.

• Expand Eq. (4) to yield

∑

k′1≤k1,...,k′`≤k`

∏̀

i=1

φ(pk′i
i ).
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The Proof (concluded)

• By Corollary 52 (p. 406),

∏̀

i=1

φ(pk′i
i ) = φ

(∏̀

i=1

p
k′i
i

)
.

• So Eq. (4) becomes

∑

k′1≤k1,...,k′`≤k`

φ

(∏̀

i=1

p
k′i
i

)
.

• Each
∏`

i=1 p
k′i
i is a unique divisor of n =

∏`
i=1 pki

i .

• Equation (4) becomes
∑

m|n
φ(m).
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The Density Attack for primes

Witnesses to

compositeness


of 
n


All numbers < 
n


• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the
white area) is φ(n)/n.
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The Density Attack for primes (concluded)

• When n = pq, where p and q are distinct primes,

φ(n)
n

=
pq − p− q + 1

pq
> 1− 1

q
− 1

p
.

• So the ratio of numbers ≤ n not relatively prime to n

(the grey area) is < (1/q) + (1/p).

– The “density attack” has probability < 2/
√

n of
factoring n = pq when p ∼ q = O(

√
n ).

– The “density attack” to factor n = pq hence takes
Ω(
√

n) steps on average when p ∼ q = O(
√

n ).

– This running time is exponential: Ω(20.5 log2 n).
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The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively
prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous
equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.
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Fermat’s “Little” Theorema

Lemma 54 For all 0 < a < p, ap−1 = 1 mod p.

• Consider aΦ(p) = {am mod p : m ∈ Φ(p)}.
• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 0 and
p− 1.

– Suppose am = am′ mod p for m > m′, where
m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or
m−m′, which is impossible.

aPierre de Fermat (1601–1665).
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The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), ap−1(p− 1)! = (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p 6 |(p− 1)!.
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The Fermat-Euler Theorema

Corollary 55 For all a ∈ Φ(n), aφ(n) = 1 mod n.

• The proof is similar to that of Lemma 54 (p. 412).

• Consider aΦ(n) = {am mod n : m ∈ Φ(n)}.
• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and
n− 1 and relatively prime to n.

– Suppose am = am′ mod n for m′ < m < n, where
m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or
m−m′, which is impossible.

aProof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.
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The Proof (concluded)

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield
aΦ(n)

∏
m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏

m∈Φ(n)

m = aΦ(n)


 ∏

m∈Φ(n)

m


 mod n.

• Finally, aΦ(n) = 1 mod n because n 6 | ∏
m∈Φ(n) m.
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An Example

• As 12 = 22 × 3,

φ(12) = 12×
(

1− 1
2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = {1, 5, 7, 11}.
• For example,

54 = 625 = 1 mod 12.
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Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say
si = sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and m` = 1 mod p, then k|`.
– Otherwise, ` = qk + a for 0 < a < k, and

m` = mqk+a = ma = 1 mod p, a contradiction.

Lemma 56 Any nonzero polynomial of degree k has at most
k distinct roots modulo p.
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Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide
p− 1.

• A primitive root of p is thus a number with exponent
p− 1.

• Let R(k) denote the total number of residues in Φ(p)
that have exponent k.

• We already knew that R(k) = 0 for k 6 |(p− 1).

• So ∑

k|(p−1)

R(k) = p− 1

as every number has an exponent.
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Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,
R(k) ≤ k, by Lemma 56 (p. 417).

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si = sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,
they comprise all solutions of xk = 1 mod p.
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Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Suppose ` < k and ` 6∈ Φ(k) with gcd(`, k) = d > 1.

• Then
(s`)k/d = (sk)`/d = 1 mod p.

• Therefore, s` has exponent at most k/d, which is less
than k.

• We conclude that

R(k) ≤ φ(k).
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Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

φ(k) = p− 1

by Lemma 52 (p. 406).

• Hence

R(k) =





φ(k) when k|(p− 1)

0 otherwise

• In particular, R(p− 1) = φ(p− 1) > 0, and p has at least
one primitive root.

• This proves one direction of Theorem 48 (p. 396).
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A Few Calculations

• Let p = 13.

• From p. 414, we know φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As Φ(p− 1) = {1, 5, 7, 11}, the primitive roots are
g1, g5, g7, g11 for any primitive root g.
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The Other Direction of Theorem 48 (p. 396)

• We must show p is a prime only if there is a number r

(called primitive root) such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q 6= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.
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The Proof (concluded)

• rφ(p) = 1 mod p by the Fermat-Euler theorem (p. 414).

• Because p is not a prime, φ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

• Note that k |φ(p) (p. 417).

• As k ≤ φ(p), k < p− 1.

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k|(p− 1)/q.

• Therefore, by virtue of the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 424



Function Problems

• Decisions problem are yes/no problems (sat, tsp (d),
etc.).

• Function problems require a solution (a satisfying
truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision
problems?

• Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the
corresponding decision problem.

– If you can find a satisfying truth assignment
efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the
corresponding function problems.
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fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth
assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a
polynomial-time algorithm.
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An Algorithm for fsat Using sat
1: t := ε;

2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[ xi = true ] ∈ sat then

5: t := t ∪ {xi = true };
6: φ := φ[ xi = true ];

7: else

8: t := t ∪ {xi = false };
9: φ := φ[ xi = false ];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if
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Analysis

• There are ≤ n + 1 calls to the algorithm for sat.a

• Shorter boolean expressions than φ are used in each call
to the algorithm for sat.

• So if sat can be solved in polynomial time, so can fsat.

• Hence sat and fsat are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
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tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances
dij = dji between any two cities i and j.

• tsp asks for a tour with the shortest total distance (not
just the shortest total distance, as earlier).

– The shortest total distance must be at most 2| x |,
where x is the input.

∗ It is at most
∑

i,j dij .

• tsp (d) asks if there is a tour with a total distance at
most B.

• We next show that if tsp (d) ∈ P, then tsp has a
polynomial-time algorithm.
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An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [ 0, 2| x | ] by calling
tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do
3: Call tsp (d) with B = C and dij = C + 1;
4: if “no” then
5: Restore dij to old value; {Edge [ i, j ] is critical.}
6: end if
7: end for
8: return the tour with edges whose dij ≤ C;
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Analysis

• An edge that is not on any optimal tour will be
eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will
also be eliminated.

• So the algorithm ends with n edges which are not
eliminated (why?).

• There are O(|x |+ n2) calls to the algorithm for tsp (d).

• So if tsp (d) can be solved in polynomial time, so can
tsp.

• Hence tsp (d) and tsp are equally hard (or easy).
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