MAX BISECTION

e MAX CUT becomes MAX BISECTION if we require that

S| =V —S.

e It has many applications, especially in VLSI layout.
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MAX BISECTION Is NP-Complete

We shall reduce the more general MAX CUT to MAX
BISECTION.

Add |V| = n isolated nodes to G to yield G’.

G’ has 2n nodes.

As the new nodes have no edges, moving them around

contributes nothing to the cut.
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The Proof (concluded)
e Every cut (S,V —5) of G = (V, E) can be made into a

bisection by appropriately allocating the new nodes

between S and V — S.

e Hence each cut of G can be made a cut of G’ of the

same size, and vice versa.
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BISECTION WIDTH

e BISECTION WIDTH is like MAX BISECTION except that it
asks if there is a bisection of size at most K (sort of MIN
BISECTION).

e Unlike MIN CUT, BISECTION WIDTH remains
NP-complete.
— A graph G = (V, E), where |V| = 2n, has a bisection
of size K if and only if the complement of G has a

bisection of size n? — K.

— So G has a bisection of size > K if and only if its

complement has a bisection of size < n? — K.
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[llustration
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HAMILTONIAN PATH |s NP-Complete?

Theorem 39 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.
e We will reduce 3SAT to HAMILTONIAN PATH.

We are given a boolean expression ¢(x1,xs2,...,T,) in
CNF.

The clauses are C1,C5,...,C,,, each containing 3
literals.

Need to construct a graph R(¢) that has a Hamiltonian
path if and only if ¢ € 3SAT.

2Karp (1972).
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The Proof (continued)

Each boolean variable must be either true or false

(“choice”).

We need to impose that all occurrences of x be assigned

the same truth value (“consistency”).

We must also make sure that all occurrences of —a be

assigned the opposite truth value (“consistency”).

Finally, the clauses provide the constraints that must be
satisfied in 3SAT (“constraint”).
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The Proof (continued)

e Both the choice gadgets and the consistency gadgets will
be used to build R(¢).

e The choice gadget makes sure that a Hamiltonian path
must take either the left parallel edge (true) or the right
parallel edge (false).
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Consistency gadget

Choice gadget

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 338



The Proof (continued)

e A Hamiltonian path that does not start or end at a node
in a consistency gadget must travel it in one of two ways
(drawn in green and red).

e Solid nodes are the only ones that connect to other
gadgets.
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The Proof (continued)

e Clauses will be turned into triangles.

e The choice and consistency gadgets make sure that each
side of the triangle is traversed by the Hamiltonian path

if and only if the corresponding literal is false.

e This implies that at least one literal has to be true if

there is a Hamiltonian path.

— If all three literals are false, then all edges of the

triangle will be traversed, which is impossible (why?).
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The Proof (continued)
e Graph R(¢) has n choice gadgets, one for each variable.

— They are connected in series.

e Graph R(¢) has m triangles, one for each clause.

— Each edge of the triangle corresponds to a literal in
the clause.

— An z; edge is connected with a consistency gadget to
the true edge of the choice gadget for z;.
x S0 the x; edge is traversed if the true edge of the
choice gadget is not.

— A —z; edge is connected with a consistency gadget to
the false edge of the choice gadget for z;.
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The Proof (continued)

e All 3m nodes of the triangles plus the last node of the
chain of choice gadgets and a new node 3 are connected

by a complete graph (drawn in green).
e A single node 2 is connected to node 3.

e This finishes the construction of R(¢).
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(x1 Vo Vas)A(—xyV -z V-oxs) A(—ry Voze V)

true false

Y
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The Proof (continued)

Suppose that a Hamiltonian path exists.
It must start at node 1 and end at node 2.

One of each variable’s 2 parallel edges in the choice

gadgets must be traversed.
This defines a truth assignment 7.

Then the path traverses the triangles.
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true false
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The Proof (continued)

e An edge of a triangle is traversed if and only if the

corresponding literal is false.

e But not all sides of a triangle can be traversed.

e Hence T = ¢.
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The Proof (concluded)

Now suppose there is a truth assignment 7' that satisfies
0.

We next find a Hamiltonian path of R(¢).

The path starts at node 1.

It traverses the edges of the choice gadgets whose

corresponding literal is true under 7.
The rest of the graph is connected by a complete graph.

We now traverse it (some of the green nodes on p. 346).
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TSP (D) Is NP-Complete

Corollary 40 TSP (D) is NP-complete.
e Consider a graph GG with n nodes.
Define d;; =11if [i,j] € Gand d;; =2 if [i,7] € G.
Set the budget B =n + 1.
Suppose G has no Hamiltonian paths.

Then every tour on the new graph must contain at least

two edges with weight 2.

— Otherwise, by removing up to one edge with weight
2, one obtains a Hamiltonian path, a contradiction.
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TSP (D) Is NP-Complete (concluded)

The total cost is then at least (n —2)+2-2=n+2 > B.
On the other hand, suppose GG has Hamiltonian paths.

Then there is a tour on the new graph containing at
most one edge with weight 2.

The total cost is then at most (n —1)+2=n+1=B.

We conclude that there is a tour of length B or less if
and only if G has a Hamiltonian path.
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Graph Coloring

k-COLORING: Can the nodes of a graph be colored with
< k colors such that no two adjacent nodes have the

same color?

2-COLORING is in P (why?).

But 3-COLORING is NP-complete (see next page).
k-COLORING is NP-complete for k > 3 (why?).

EXACT-k-COLORING asks if the nodes of a graph can be

colored using exactly k colors.

It remains NP-complete for & > 3 (why?).
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3-COLORING Is NP-Complete?

We will reduce NAESAT to 3-COLORING.

We are given a set of clauses C1,Cs,...,C,, each with 3
literals.

The boolean variables are x1, 22, ..., x,.

We shall construct a graph G such that it can be colored
with colors {0, 1,2} if and only if all the clauses can be
NAE-satisfied.

2Karp (1972).
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The Proof (continued)

e Every variable z; is involved in a triangle |a, x;, —x; ]

with a common node a.
e Each clause C; = (¢;1 V ¢i2 V ¢;3) is also represented by a
triangle
[Ci1,Ci2,Cz‘3]-
— Node ¢;; with the same label as one in some triangle

| a, xy, —x) | represent distinct nodes.

e There is an edge between c¢;; and the node that
represents the jth literal of C;.
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Construction for - - -

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 355



The Proof (continued)

Suppose the graph is 3-colorable.

e Assume without loss of generality that node a takes the

color 2.
e A triangle must use up all 3 colors.

e As a result, one of x; and —x; must take the color 0 and
the other 1.
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The Proof (continued)

e Treat 1 as true and 0 as false.?
— We were dealing only with those triangles with the a

node, not the clause triangles.

e The resulting truth assignment is clearly contradiction

free.

e As each clause triangle contains one color 1 and one

color 0, the clauses are NAE-satisfied.

The opposite also works.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 357



The Proof (continued)

Suppose the clauses are NAE-satisfiable.
e Color node a with color 2.

e Color the nodes representing literals by their truth
values (color 0 for false and color 1 for true).

— We were dealing only with those triangles with the a
node, not the clause triangles.
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The Proof (concluded)

e For each clause triangle:
— Pick any two literals with opposite truth values.

— Color the corresponding nodes with 0 if the literal is
true and 1 if it is false.

— Color the remaining node with color 2.

e The coloring is legitimate.

— If literal w of a clause triangle has color 2, then its
color will never be an issue.

— If literal w of a clause triangle has color 1, then it
must be connected up to literal w with color 0.

— If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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Algorithms for 3-COLORING and the Chromatic
Number x(G)

Assume G is 3-colorable.

There is an algorithm to find a 3-coloring in time
O(3"/3) = 1.44227 2

It has been improved to O(1.3289")."

There is an algorithm to find x(G) in time
O((4/3)"/3) = 2.4422™ ©

It can be improved to
O((4/3 4+ 3%/3 /4)™) = O(2.4150™).4

2Lawler (1976).

PBeigel and Eppstein (2000).
“Lawler (1976).

dEppstein (2003).
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TRIPARTITE MATCHING

e We are given three sets B, G, and H, each containing n
elements.

o Let 'C B x G x H be a ternary relation.

e TRIPARTITE MATCHING asks if there is a set of n triples

in I, none of which has a component in common.

— Each element in B is matched to a different element
in G and different element in H.

Theorem 41 (Karp (1972)) TRIPARTITE MATCHING is
NP-complete.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 361



Related Problems

We are given a family F' = {51,5,,...,5,} of subsets of
a finite set U and a budget B.

SET COVERING asks if there exists a set of B sets in F

whose union is U.

SET PACKING asks if there are B disjoint sets in F'.

Assume |U| = 3m for some m € N and |S;| = 3 for all 4.

EXACT COVER BY 3-SETS asks if there are m sets in F'
that are disjoint and have U as their union.
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 42 SET COVERING, SET PACKING, and EXACT
COVER BY 3-SETS are all NP-complete.
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The KNAPSACK Problem
There is a set of n items.

Item 7 has value v; € Z™ and weight w; € Z.

We are given K € ZT and W € Z™.

KNAPSACK asks if there exists a subset S C {1,2,...,n}
such that } ., qw; <W and ), qv; > K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK Is NP-Complete

KNAPSACK € NP: Guess an S and verify the constraints.
We assume v; = w; for all 2 and K = W.

KNAPSACK now asks if a subset of {v1,vs,...,v,} adds
up to exactly K.

— Picture yourself as a radio DJ.

— Or a person trying to control the calories intake.

We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.
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The Proof (continued)

We are given a family F = {51, 55,...,5,} of size-3
subsets of U = {1,2,...,3m}.

EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.
Think of a set as a bit vector in {0, 1}3™.

— 001100010 means the set {3,4,8}, and 110010000
means the set {1,2,5}.

3m

.~
Our goal is 11---1.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 367



The Proof (continued)

e A bit vector can also be considered as a binary numober.

e Set union resembles addition.

— 001100010 + 110010000 = 111110010, which denotes
the set {1,2,3,4,5,8}, as desired.

e Trouble occurs when there is carry.

— 001100010 + 001110000 = 010010010, which denotes
the set {2, 5,8}, not the desired {3, 4,5, 8}.
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The Proof (continued)

e Carry may also lead to a situation where we obtain our

solution 11---1 with more than m sets in F'.

— 001100010 + 001110000 + 101100000 + 000001101 =
111111111,

— But this “solution” {1,3,4,5,6,7,8,9} does not

correspond to an exact cover.
— And it uses 4 sets instead of the required m = 3.2

e To fix this problem, we enlarge the base just enough so

that there are no carries.

e Because there are n vectors in total, we change the base
from 2 ton + 1.

*Thanks to a lively class discussion on November 20, 2002.
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The Proof (continued)

e Set v; to be the (n + 1)-ary number corresponding to the

bit vector encoding .5;.

e Now in base n + 1, if there is a set .S such that

3m

’ N : .
quies v; = 11---1, then every bit position must be

contributed by exactly one v; and |S| = m.

e Finally, set

-1 (base n+1).
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The Proof (continued)

e Suppose F' admits an exact cover, say {S51,52,...,5m}-

e Then picking S = {v1,v9,...,vy} clearly results in

3m
—N—
v +vo+---+v, =11---1.

— It is important to note that the meaning of addition
(4+) is independent of the base.?
— It is just regular addition.

— But a \5; may give rise to different v;’s under different

bases.

2Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3,
2004.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 371



The Proof (concluded)

e On the other hand, suppose there exists an S such that

3m

—
D v,esVi=11---1in base n + 1.

e The no-carry property implies that |S| = m and

{S; : v; € S} is an exact cover.
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An Example

e Let m=3,U ={1,2,3,4,5,6,7,8,9}, and

{1,3,4},
{2, 3,4},
{2,5,6},
{6,7,8},
{7,8,9}.

e Note that n = 5, as there are 5 .5;’s.
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An Example (concluded)

e Our reduction produces

K | ..-1 (base 6) = 2015539,

V1 101100000 = 1734048,
V2 011100000 = 334368,
V3 010011000 = 281448,
V4 000001110 = 238,

U5 000000111 = 43.

[ ] Note ’Ul—l—Ug—l-’U5 :K
e Indeed, S; U S3U S5 =11,2,3,4,5,6,7,8,9}, an exact

cover by 3-sets.
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BIN PACKING

e We are given NN positive integers ai,as,...,ay, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.
e Think of packing bags at the check-out counter.

Theorem 43 BIN PACKING s NP-complete.
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INTEGER PROGRAMMING

e INTEGER PROGRAMMING asks whether a system of linear
inequalities with integer coeflicients has an integer

solution.

— LINEAR PROGRAMMING asks whether a system of

linear inequalities with integer coeflicients has a

rational solution.
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INTEGER PROGRAMMING Is NP-Complete?

e SET COVERING can be expressed by the inequalities
Az > 1, S 1w < B,0<uxz; <1, where

— x; is one if and only if S; is in the cover.

— A is the matrix whose columns are the bit vectors of
the sets S, 59, .. ..

— 1 is the vector of 1s.
e This shows INTEGER PROGRAMMING is NP-hard.

e Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

2Papadimitriou (1981).
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Christos Papadimitriou
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Easier or Harder?®
e Adding restrictions on the allowable problem instances
will not make a problem harder.
— We are now solving a subset of problem instances.

The INDEPENDENT SET proof (p. 307) and the
KNAPSACK proof (p. 366).

SAT to 2SAT (easier by p. 290).

CIRCUIT VALUE to MONOTONE CIRCUIT VALUE
(equally hard by p. 265).

2Thanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

e Adding restrictions on the allowable solutions may make
a problem easier, as hard, or harder.

e It is problem dependent.
— MIN CUT to BISECTION WIDTH (harder by p. 333).

LINEAR PROGRAMMING to INTEGER PROGRAMMING
(harder by p. 376).

SAT to NAESAT (equally hard by p. 301) and MAX
CUT to MAX BISECTION (equally hard by p. 331).

3-COLORING to 2-COLORING (easier by p. 352).
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coNP and Function Problems
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coNP

e By definition, coNP is the class of problems whose

complement is in NP.

e NP is the class of problems that have succinct

certificates (recall Proposition 31 on p. 274).

e coNP is therefore the class of problems that have

succinct disqualifications:

— A “no” instance of a problem in coNP possesses a
short proof of its being a “no” instance.

— Only “no” instances have such proofs.
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coNP (continued)

e Suppose L is a coNP problem.
e There exists a polynomial-time nondeterministic
algorithm M such that:

— If x € L, then M (x) = “yes” for all computation
paths.

— If x ¢ L, then M (x) = “no” for some computation
path.
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coNP (concluded)
e Clearly P C coNP.

e [t is not known if
P = NP N coNP.
— Contrast this with

R = RENcoRE

(see Proposition 11 on p. 137).
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Some coNP Problems

VALIDITY € coNP.

— If ¢ is not valid, it can be disqualified very succinctly:
a truth assignment that does not satisty it.

SAT COMPLEMENT & coNP.

— The disqualification is a truth assignment that
satisfies it.

HAMILTONIAN PATH COMPLEMENT &€ coNP.

— The disqualification is a Hamiltonian path.

OPTIMAL TSP (D) € coNP.?

— The disqualification is a tour with a length < B.

2 Asked by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
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An Alternative Characterization of coNP

Proposition 44 Let L C X* be a language. Then L € coNP
of and only if there is a polynomially decidable and

polynomially balanced relation R such that

L=A{x:Vy(z,y) € R}.

(As on p. 273, we assume |y| < |z |¥ for some k.)

e L ={x:(x,y) € =R for some y}.

e Because —R remains polynomially balanced, L € NP by
Proposition 31 (p. 274).

Hence L € coNP by definition.
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coNP Completeness

Proposition 45 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the <= part is symmetric)
e Let L’ be any coNP language.
Hence L' € NP.
Let R be the reduction from L’ to L.

So x € L' if and only if R(z) € L.

So x € I’ if and only if R(z) € L.

R is a reduction from L’ to L.
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Some coNP-Complete Problems

e SAT COMPLEMENT is coNP-complete.

— SAT COMPLEMENT is the complement of SAT.

e VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.
— The reduction from SAT COMPLEMENT to VALIDITY

is hence easy.

e HAMILTONIAN PATH COMPLEMENT is coNP-complete.
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Possible Relations between P, NP, coNP

1. P = NP = coNP.
2. NP = coNP but P £ NP.
3. NP = coNP and P # NP.

e This is current “consensus.”
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coNP Hardness and NP Hardness?

Proposition 46 If a coNP-hard problem is in NP, then
NP = coNP.

e LLet L € NP be coNP-hard.
e LLet NTM M decide L.

e For any L’ € coNP, there is a reduction R from L’ to L.

L' € NP as it is decided by NTM M (R(x)).

— Alternatively, NP is closed under complement.
e Hence coNP C NP.

e The other direction NP C coNP is symmetric.

2Brassard (1979); Selman (1978).
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coNP Hardness and NP Hardness (concluded)

Similarly,

Proposition 47 If an NP-hard problem is in coNP, then
NP = coNP.

As a result:
e NP-complete problems are unlikely to be in coNP.

e coNP-complete problems are unlikely to be in NP.
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