
Completenessa

• As reducibility is transitive, problems can be ordered
with respect to their difficulty.

• Is there a maximal element?

• It is not altogether obvious that there should be a
maximal element.

– Many infinite structures (such as integers and reals)
do not have maximal elements.

• Hence it may surprise you that most of the complexity
classes that we have seen so far have maximal elements.

aCook (1971) and Levin (1971).
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Completeness (concluded)

• Let C be a complexity class and L ∈ C.
• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have
complete problems!

• Complete problems capture the difficulty of a class
because they are the hardest.
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Stephen Arthur Cook (1939–)

Richard Karp, “It is to our everlast-
ing shame that we were unable to
persuade the math department [of
UC-Berkeley] to give him tenure.”
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Leonid Levin (1948–)
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Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.
• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.
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Illustration of Completeness and Hardness
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Closedness under Reductions

• A class C is closed under reductions if whenever L is
reducible to L′ and L′ ∈ C, then L ∈ C.

• P, NP, coNP, L, NL, PSPACE, and EXP are all closed
under reductions.
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Complete Problems and Complexity Classes

Proposition 25 Let C′ and C be two complexity classes
such that C′ ⊆ C. Assume C′ is closed under reductions and
L is C-complete. Then C = C′ if and only if L ∈ C′.
• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.
• Because C′ is closed under reductions, A ∈ C′.
• Hence C ⊆ C′.
• As C′ ⊆ C, we conclude that C = C′.
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The Proof (concluded)

• On the other hand, suppose C = C′.
• As L is C-complete, L ∈ C.
• Thus, trivially, L ∈ C′.
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Two Immediate Corollaries

Proposition 25 implies that

• P = NP if and only if an NP-complete problem in P.

• L = P if and only if a P-complete problem is in L.
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Complete Problems and Complexity Classes

Proposition 26 Let C′ and C be two complexity classes
closed under reductions. If L is complete for both C and C′,
then C = C′.
• All languages L ∈ C reduce to L ∈ C′.
• Since C′ is closed under reductions, L ∈ C′.
• Hence C ⊆ C′.
• The proof for C′ ⊆ C is symmetric.
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Table of Computation

• Let M = (K, Σ, δ, s) be a single-string polynomial-time
deterministic TM deciding L.

• Its computation on input x can be thought of as a
|x |k × |x |k table, where |x |k is the time bound.

– It is a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of
position j of the string after i steps of computation.
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Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

– The string length hence never exceeds |x |k.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔

s so that each row has length |x |k.

– The computation will never reach the right end of
the table for lack of time.

• If the cursor scans the jth position at time i when M is
at state q and the symbol is σ, then the (i, j)th entry is
a new symbol σq.
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Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of
σq.

• Modify M so that the cursor starts not at ¤ but at the
first symbol of the input.

• The cursor never visits the leftmost ¤ by telescoping
two moves of M each time the cursor is about to move
to the leftmost ¤.

• So the first symbol in every row is a ¤ and not a ¤q.
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Some Conventions To Simplify the Table (concluded)

• Suppose M has halted before its time bound of |x |k, so
that “yes” or “no” appears at a row before the last.

• Then all subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is
“yes” for some position j.
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Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k︷ ︸︸ ︷
¤0s10001

⊔ ⊔
· · ·

⊔

• A typical row may look like

| x |k︷ ︸︸ ︷
¤10100q01110100

⊔ ⊔
· · ·

⊔
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Comments (concluded)

• The last rows must look like

| x |k︷ ︸︸ ︷
¤ · · · “yes” · · ·

⊔
or

| x |k︷ ︸︸ ︷
¤ · · · “no” · · ·

⊔

• Three out of four of the table’s borders are known:

#��D��E��F��G��H��I���#

#

�

�
# �# �
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A P-Complete Problem

Theorem 27 (Ladner (1975)) circuit value is
P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such
that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.
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The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of
Tij is known.

– The jth symbol of x or
⊔

, a ¤, and a
⊔

, respectively.

– Recall that three out of four of T ’s borders are
known.
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The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j , and Ti−1,j+1.

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on
the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, where

m = dlog2 |Γ |e

(state assignment in circuit design).
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The Proof (continued)

• Let the m-bit binary string Sij1Sij2 · · ·Sijm encode Tij .

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries
Sij`, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ` ≤ m.
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The Proof (continued)

• Each bit Sij` depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j : Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• There is a binary function F` with 3m inputs such that

Sij` = F`(Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m),

where for all i, j > 0 and 1 ≤ ` ≤ m.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 258



The Proof (continued)

• These Fi’s depend on only M ’s specification, not on x.

• Their sizes are fixed.

• These boolean functions can be turned into boolean
circuits.

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j , Ti−1,j+1) = Tij .

– C is like an ASIC (application-specific IC) chip.
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Circuit C
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The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme
columns.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output
“yes”/“no” (coded as 1/0) appear at position
(|x |k − 1, 1).
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The Computation Tableau and R(x)

#��D��E��F��G��H��I���
#
#

�
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A Corollary

The construction in the above proof yields the following,
more general result.

Corollary 28 If L ∈ TIME(T (n)), then a circuit with
O(T 2(n)) gates can decide if x ∈ L for |x | = n.
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monotone circuit value

• A monotone boolean circuit’s output cannot change
from true to false when one input changes from false to
true.

• Monotone boolean circuits are hence less expressive than
general circuits.

– They can compute only monotone boolean functions.

• Monotone circuits do not contain ¬ gates (prove it).

• monotone circuit value is circuit value applied
to monotone circuits.
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monotone circuit value Is P-Complete

Despite their limitations, monotone circuit value is as
hard as circuit value.

Corollary 29 monotone circuit value is P-complete.

• Given any general circuit, we can “move the ¬’s
downwards” using de Morgan’s laws. (Think!)
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Cook’s Theorem: the First NP-Complete Problem

Theorem 30 (Cook (1971)) sat is NP-complete.

• sat ∈ NP (p. 95).

• circuit sat reduces to sat (p. 229).

• Now we only need to show that all languages in NP can
be reduced to circuit sat.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 266



The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at
each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that
x ∈ L if and only if R(x) is satisfiable.

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c| x |k−1) ∈ {0, 1}| x |k−1.

• Once B is given, the computation is deterministic.
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The Proof (continued)

• Each choice of B results in a deterministic
polynomial-time computation.

• So each choice of B results in a table like the one on
p. 262.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:
C(Ti−1,j−1, Ti−1,j , Ti−1,j+1, c) = Tij .

C


c
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The Computation Tableau for NTMs and R(x)
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The Proof (concluded)

• The overall circuit R(x) (on p. 269) is satisfiable if there
is a truth assignment B such that the computation table
accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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NP-Complete Problems
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Wir müssen wissen, wir werden wissen.
(We must know, we shall know.)

— David Hilbert (1900)

I predict that scientists will one day adopt a new
principle: “NP-complete problems are hard.”
That is, solving those problems efficiently is
impossible on any device that could be built

in the real world, whatever the final laws
of physics turn out to be.
— Scott Aaronson (2008)
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Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R}

is in P.a

• R is said to be polynomially balanced if (x, y) ∈ R

implies |y| ≤ |x |k for some k ≥ 1.

aProposition 31 (p. 274) remains valid if P is replaced by NP. Con-

tributed by Mr. Cheng-Yu Lee (R95922035) on October 26, 2006.
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An Alternative Characterization of NP

Proposition 31 (Edmonds (1965)) Let L ⊆ Σ∗ be a
language. Then L ∈ NP if and only if there is a polynomially
decidable and polynomially balanced relation R such that

L = {x : ∃y (x, y) ∈ R}.

• Suppose such an R exists.

• L can be decided by this NTM:

– On input x, the NTM guesses a y of length ≤ |x |k
and tests if (x, y) ∈ R in polynomial time.

– It returns “yes” if the test is positive.
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The Proof (concluded)

• Now suppose L ∈ NP.

• NTM N decides L in time |x |k.

• Define R as follows: (x, y) ∈ R if and only if y is the
encoding of an accepting computation of N on input x.

• R is polynomially balanced as N is polynomially
bounded.

• R is polynomially decidable because it can be efficiently
verified by checking with N ’s transition function.

• Finally L = {x : (x, y) ∈ R for some y} because N

decides L.
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Jack Edmonds

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276



Comments

• Any “yes” instance x of an NP problem has at least one
succinct certificate or polynomial witness y.

• “No” instances have none.

• Certificates are short and easy to verify.

– An alleged satisfying truth assignment for sat; an
alleged Hamiltonian path for hamiltonian path.

• Certificates may be hard to generate (otherwise, NP
equals P), but verification must be easy.

• NP is the class of easy-to-verify (in P) problems.
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