Nondeterministic Space Complexity Classes

Let L be a language.

Then
L € NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).
NSPACE(f(n)) is a set of languages.

As in the linear speedup theorem (Theorem 4 on p. 72),

constant coeflficients do not matter.
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Graph Reachability

Let G(V, F) be a directed graph (digraph).

REACHABILITY asks if, given nodes a and b, does G
contain a path from a to b7

Can be easily solved in polynomial time by breadth-first
search.

How about the nondeterministic space complexity?
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The First Try in NSPACE(n logn)
. 21 := a; {Assume a # b.}
. fort=2,3,...,ndo
Guess z; € {v1,v2,...,0,}; {The ith node.}
. end for
 fort=2,3,...,ndo
if (x;_1,%;) ¢ E then

44 .
no”;

end if
if x; = b then

44 79

yes';
end if

. end for

. “no” :
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In Fact REACHABILITY € NSPACE(logn)
1 T = a;
2: for 1 =2,3,...,ndo
3:  Guess y € {v1,va,...,v,}; {The next node.}

if (z,y) ¢ F then

“HO” ;

end if
if y = b then

44 79

yes;
end if

10: X =1,
11: end for

7

12: “no”;
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Space Analysis

Variables i, x, and y each require O(logn) bits.

Testing (z,y) € E is accomplished by consulting the
input string with counters of O(logn) bits long.

Hence

REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node
also has the same complexity.

REACHABILITY € P (p. 195).
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Undecidability
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It seemed unworthy of a grown man
to spend his time on such trivialities,
but what was I to do?

— Bertrand Russell (1872-1970),

Autobiography, Vol. 1
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Infinite Sets

e A set is countable if it is finite or if it can be put in
one-one correspondence with N ={0,1,...}, the set of

natural numbers.

— Set of integers Z.
* 0—=0,1=1,2<3,3<5,...,—1 <2, -2«
4, -3 —0,....

Set of positive integers Z1: i — 1 < 3.
Set of odd integers: (i —1)/2 « 1.

Set of rational numbers: See next page.

Set of squared integers: i <> /i .
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Rational Numbers Are Countable

1H—
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Cardinality
e For any set A, define |A| as A’s cardinality (size).
e T'wo sets are said to have the same cardinality, or
Al =|B|] or A~ B,

if there exists a one-to-one correspondence between their

elements.

o 24 denotes set A’s power set, that is {B: B C A}.
— If |A| = k, then |24| = 2F.
— So |A] < |24| when A is finite.
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Cardinality (concluded)

|A| < |B| if there is a one-to-one correspondence

between A and one of B’s subsets.
A < |B| if |A| < |B| but |A] # |B|.
If AC B, then |[A| < |B]|.

But if A C B, then |A| < |B|?
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Cardinality and Infinite Sets

e If A and B are infinite sets, it is possible that A C B yet
Al = [B].
— The set of integers properly contains the set of odd
integers.
— But the set of integers has the same cardinality as

the set of odd integers (p. 107).

e A lot of “paradoxes.”
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Hilbert's* Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now let us imagine a hotel with an infinite number of

rooms, and all the rooms are occupied.

A new guest comes and asks for a room.

“But of course!” exclaims the proprietor, and he moves
the person previously occupying Room 1 into Room 2,

the person from Room 2 into Room 3, and so on .. ..

e The new customer occupies Room 1.

aDavid Hilbert (1862-1943).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112



Hilbert's Paradox of the Grand Hotel (concluded)

e Let us imagine now a hotel with an infinite number of
rooms, all taken up, and an infinite number of new

guests who come in and ask for rooms.

Y

“Certainly, gentlemen,” says the proprietor, “just wait a

minute.”

He moves the occupant of Room 1 into Room 2, the

occupant of Room 2 into Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

“There are many rooms in my Father’s house, and I am

going to prepare a place for you.” (John 14:3)
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David Hilbert (1862-1943)
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Galileo’s* Paradox (1638)

The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

This is contrary to the axiom of Euclid® that the whole

is greater than any of its proper parts.

Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

The difference between a mathematical paradox and a

contradiction is often a matter of opinion.

2Galileo (1564-1642).
PEuclid (325 B.C.-265 B.C.).
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Cantor’'s® Theorem

Theorem 7 The set of all subsets of N (2V) is infinite and

not countable.

e Suppose it is countable with f : N — 2N being a

bijection.
e Consider theset B={keN: k¢ f(k)} CN.

e Suppose B = f(n) for some n € N.

2Georg Cantor (1845-1918). According to Kac and Ulam, “[If] one
had to name a single person whose work has had the most decisive in-
fluence on the present spirit of mathematics, it would almost surely be
Georg Cantor.”
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The Proof (concluded)

If n € f(n) = B, then n € B, but then n ¢ B by B’s
definition.

If n¢ f(n) =B, then n & B, but then n € B by B’s
definition.

Hence B # f(n) for any n.

f is not a bijection, a contradiction.
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Georg Cantor (1845-1918)
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Cantor’s Diagonalization Argument lllustrated

4
®
o
(]

6
o
O
o
o
(J
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A Corollary of Cantor’'s Theorem

Corollary 8 For any set T', finite or infinite,

T <|2"].

The inequality holds in the finite 1" case.
Assume T is infinite now.
To prove | T'| < |21, simply consider f(z) = {z} € 27.

To prove the strict inequality |T'| < |21, we use the

same argument as Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 9 The set of all functions on N is not countable.
e It suffices to prove it for functions from N to {0, 1}.

e Every such function f: N — {0,1} determines a set
{n:f(n)=1} N
and vice versa.

e So the set of functions from N to {0, 1} has cardinality
2% ].

e Corollary 8 (p. 120) then implies the claim.
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Existence of Uncomputable Problems

Every program is a finite sequence of Os and 1s, thus a

nonnegative integer.

Hence every program corresponds to some integer.
The set of programs is countable.

A function is a mapping from integers to integers.

The set of functions is not countable by Corollary 9
(p. 121).

So there are functions for which no programs exist.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122



Universal Turing Machine?

e A universal Turing machine U interprets the input
as the description of a TM M concatenated with the

description of an input to that machine, .

— Both M and x are over the alphabet of U.

e U simulates M on z so that
UM;xz)=M(x).

e U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which

executes any valid bytecode.

2Turing (1936).
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The Halting Problem

e Undecidable problems are problems that have no

algorithms or languages that are not recursive.
e We knew undecidable problems exist (p. 122).

e We now define a concrete undecidable problem, the

halting problem:
H={M;z: M(z)#/}.

— Does M halt on input x?
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H |s Recursively Enumerable

Use the universal TM U to simulate M on x.
When M is about to halt, U enters a “yes” state.
If M (x) diverges, so does U.

This TM accepts H.

Membership of x in any recursively enumerative

language accepted by M can be answered by asking

M;x e H?
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H |s Not Recursive

e Suppose there is a TM My that decides H.

e Consider the program D(M) that calls Mpy:
: if Mg (M; M) = “yes” then
/" {Writing an infinite loop is easy, right?}

44 7

: yes’;
- end if

1
2
3: else
4
5

e Consider D(D):
— D(D) =/= Myu(D;D) = “yes” = D;D € H =
D(D) #,", a contradiction.
(D) = “yes” = Myx(D;D) = “no” = D;D ¢ H =
(D)

/", a contradiction.
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Comments

e Two levels of interpretations of M:

— A sequence of 0s and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes.
— Concepts should be familiar to computer scientists.

— Feed a C compiler to a C compiler, a Lisp interpreter
to a Lisp interpreter, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.?
e Then 27 C T because 27 is a set.
But we know |21 | > |T| (p. 120)!
We got a “contradiction.”
So what gives?
Are we willing to give up Cantor’s theorem?

If not, what is a set?

2Recall this ontological argument for the existence of God by
St Anselm (—1109) in the 11th century: If something is possible but is
not part of God, then God is not the greatest possible object of thought,

a contradiction.
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Self-Loop Paradoxes (continued)

Russell’s Paradox (1901): Consider R={A: A ¢ A}.
e If R € R, then R ¢ R by definition.
e If R¢ R, then R € R also by definition.

e In either case, we have a “contradiction.”
Eubulides: The Cretan says, “All Cretans are liars.”
Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient with imaginary symptoms and

allments.
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Bertrand Russell (1872-1970)
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Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): “I'm not a

woman you can trust.”
Spin City: “I am not gay, but my boyfriend is.”

Numbers 12:3, Old Testament: “Moses was the most
humble person in all the world [---]|” (attributed to
Moses).
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Self-Loop Paradoxes and Turing Machine??

e Can self-loop paradoxes happen to Turing machine?

e If so, will it shake the foundation of the theory of

computation?

e If not, why?

@Contributed by a student at Vanung University on June 6, 2008.
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Reductions in Proving Undecidability

Suppose we are asked to prove L is undecidable.
Language H is known to be undecidable.

We try to find a computable transformation (called
reduction) R such that?®

Vx {R(x) € L if and only if z € H}.

We can answer “xz € H?” for any x by asking
“R(x) € L?” instead.

e This suffices to prove that L is undecidable.

2Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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More Undecidability
e H* ={M : M halts on all inputs}.

— Given the question “M;x € H?” we construct the

following machine:?
M (y) = M(z).

M, halts on all inputs if and only if M halts on =.
In other words, M, € H* if and only if M;z € H.

So if the said language were recursive, H would be

recursive, a contradiction.

2Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.
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More Undecidability (concluded)
e {M;x : there is a y such that M (z) = y}.

e {M;x :the computation M on input x uses all states of M }.

o {Miz;y: M(z)=y}.
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Complements of Recursive Languages

Lemma 10 If L is recursive, then so is L.
e Let L be decided by M (which is deterministic).

e Swap the “yes” state and the “no” state of M.

e The new machine decides L
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Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and L are

recursively enumerable.

e Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

e Simulate M and M in an interleaved fashion.
e If M accepts, then x € L and M’ halts on state “yes.”

o If M accepts, then x ¢ L and M’ halts on state “no.”
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A Very Useful Corollary and Its Consequences

Corollary 12 L s recursively enumerable but not recursive,

then L is not recursively enumerable.
e Suppose L is recursively enumerable.
e Then both L and L are recursively enumerable.
e By Lemma 11 (p. 137), L is recursive, a contradiction.

Corollary 13 H is not recursively enumerable.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable (note that coRE is not RE).
e oRE={L:LecRE}.
e RE={L:L¢RE}.

R: The set of all recursive languages.
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R, RE, and coRE (concluded)
R = RENcoRE (p. 137).

There exist languages in RE but not in R and not in
coRE.

— Such as H (p. 125, p. 126, and p. 138).

There are languages in coRE but not in RE.

— Such as H (p. 138).

There are languages in neither RE nor coRE.
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Undecidability in Logic and Mathematics

e First-order logic is undecidable.?

e Natural numbers with addition and multiplication is
undecidable.?

e Rational numbers with addition and multiplication is

undecidable.€

2Church (1936).

PRosser (1937).
“Robinson (1948).
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Undecidability in Logic and Mathematics (concluded)

e Natural numbers with addition and equality is decidable

and complete.?

e Elementary theory of groups is undecidable.”

2Presburger’s Master’s thesis (1928), his only work in logic. The
direction was suggested by Tarski. Mojzesz Presburger (1904-1943) died

in Nazi’s concentration camp.
PTarski (1949).
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Julia Hall Bowman Robinson (1919-1985)
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Boolean Logic
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Boolean Logic*

Boolean variables: zi,z2,....
Literals: xz;, —x;.
Boolean connectives: V, A, —.

Boolean expressions: Boolean variables, ¢ (negation),

1V ¢2 (disjunction), ¢1 A ¢2 (conjunction).
o \/._, ¢; stands for ¢1 V2 V- -+ V ¢y.
o A._, ¢; stands for ¢p1 A2 A -+ A @y
Implications: ¢; = ¢2 is a shorthand for —¢1 V ¢2.

Biconditionals: ¢1 < ¢2 is a shorthand for
(f1 = ¢2) A (92 = ¢1).
2George Boole (1815-1864) in 1847.
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Truth Assignments

e A truth assignment 7' is a mapping from boolean

variables to truth values true and false.

e A truth assignment is appropriate to boolean
expression ¢ if it defines the truth value for every

variable in ¢.

— {z1 = true,xo = false} is appropriate to x; V xs.
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Satisfaction

e T = ¢ means boolean expression ¢ is true under T’ in

other words, 1" satisfies ¢.

e ¢ and ¢, are equivalent, written

b1 = P2,
if for any truth assignment 7" appropriate to both of
them, T' |= ¢ if and only if T' = ¢s.

— Equivalently, for any truth assignment 7' appropriate
to both of them, T' = (¢1 < ¢2).
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Truth Tables

e Suppose ¢ has n boolean variables.

e A truth table contains 2" rows, one for each possible
truth assignment of the n variables together with the
truth value of ¢ under that truth assignment.

e A truth table can be used to prove if two boolean

expressions are equivalent.

— Check if they give identical truth values under all 2™

truth assignments.
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A Truth Table

|
0
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De Morgan's®* Laws
e De Morgan’s laws say that

“(P1 A p2) = —p1V e,
2(P1V P2) = —o1 Ao

e Here is a proof for the first law:

P11 P2 | (D1 Ad2) —P1V o
0 1 1

0
0
1
1

1 1 1
0 1 1
1 0 0

2 Augustus DeMorgan (1806-1871).
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Conjunctive Normal Forms

e A boolean expression ¢ is in conjunctive normal

form (CNF) if
¢ — /\ Cz'a
i=1

where each clause C; is the disjunction of zero or more

literals.?
— For example, (21 V x2) A (21 V —22) A (22 V x3).
e Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

e A boolean expression ¢ is in disjunctive normal form
(DNF) if

¢="\/ D,
i=1

where each implicant D; is the conjunction of one or

more literals.

— For example,

(5131 A\ SCQ) V (5131 A\ —|5132> V (%2 A\ $3).
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Any Expression ¢ Can Be Converted into CNFs and DNFs

¢ = x;: This is trivially true.

¢ = ~¢1 and a CNF is sought: Turn ¢; into a DNF and
apply de Morgan’s laws to make a CNF for ¢.

¢ = ~¢1 and a DNF is sought: Turn ¢; into a CNF and
apply de Morgan’s laws to make a DNF for ¢.

®» = ¢1V 92 and a DNF is sought: Make ¢; and ¢2
DNPF's.

¢ = ¢1 V ¢2 and a CNF is sought: Let ¢; = A}, A; and
¢2 = \i2; Bj be CNFs. Set

ni n2

o= N\ N\ AV B)).

i=1j5=1
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Any Expression ¢ Can Be Converted into CNFs and DNFs
(concluded)

¢ = ¢1 A\ 92 and a CNF is sought: Make ¢; and ¢o
CNF's.

¢ = ¢1 A\ ¢ and a DNF is sought: Let ¢, =/, ; A; and
¢2 = \/;2, Bj be DNFs. Set

niy mna2

o=\ \ (4 A B)).

i=1j=1
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An Example: Turn =((a Ay) V (2 V w)) into a DNF

(aAy)V(zVw))

((@) A (y) V(2 Vw))

(aVzVw)A(yVzVuw))

~(CNFVCNF)

~(CNF)

de M:organ )\/ﬂ(y\/z\/w)

= (ma A=z A —-w)V (—y Az A —w).
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