Nondeterministic Space Complexity Classes

- \bullet Let L be a language.
- Then

$$L \in NSPACE(f(n))$$

if there is an NTM with input and output that decides L and operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem (Theorem 4 on p. 72), constant coefficients do not matter.

Graph Reachability

- Let G(V, E) be a directed graph (digraph).
- REACHABILITY asks if, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about the nondeterministic space complexity?

```
The First Try in NSPACE(n \log n)
 1: x_1 := a; {Assume a \neq b.}
 2: for i = 2, 3, \dots, n do
      Guess x_i \in \{v_1, v_2, \dots, v_n\}; {The ith node.}
 4: end for
 5: for i = 2, 3, \dots, n do
6: if (x_{i-1}, x_i) \notin E then
 7: "no";
 8: end if
9: if x_i = b then
10: "yes";
    end if
11:
12: end for
13: "no";
```

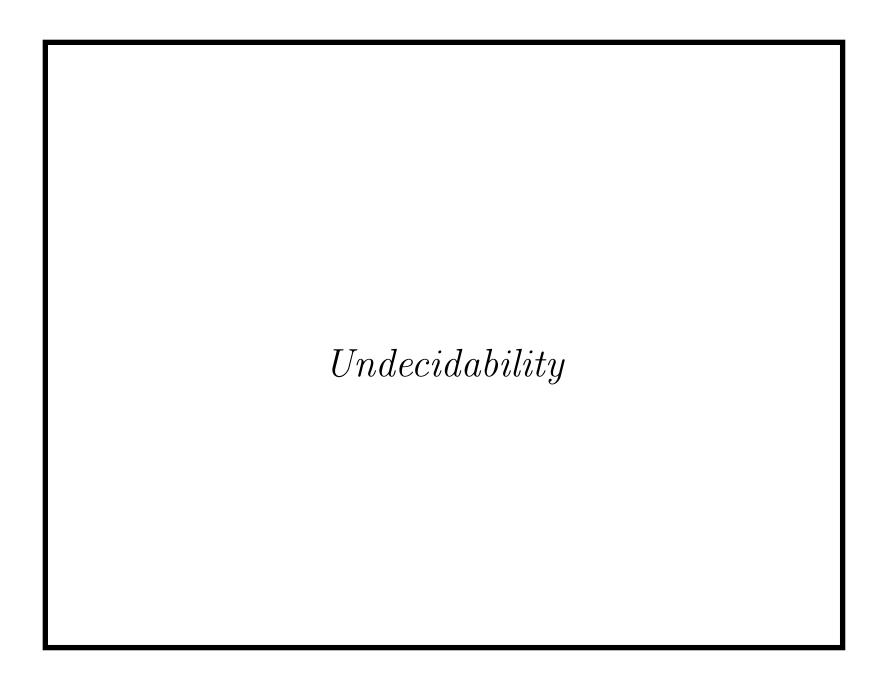
```
In Fact REACHABILITY \in NSPACE(\log n)
 1: x := a;
 2: for i = 2, 3, \dots, n do
    Guess y \in \{v_1, v_2, \dots, v_n\}; {The next node.}
 4: if (x,y) \notin E then
 5: "no";
 6: end if
 7: if y = b then
 8: "yes";
9: end if
   x := y;
10:
11: end for
12: "no";
```

Space Analysis

- Variables $i, x, \text{ and } y \text{ each require } O(\log n) \text{ bits.}$
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

REACHABILITY \in NSPACE(log n).

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILITY $\in P$ (p. 195).



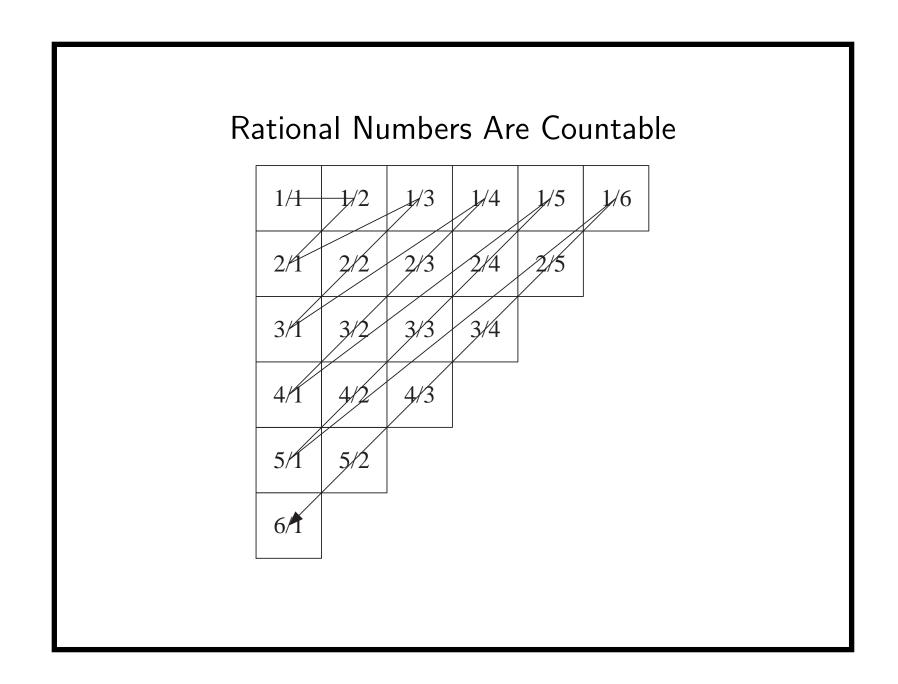
It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? — Bertrand Russell (1872–1970), Autobiography, Vol. I

Infinite Sets

- A set is **countable** if it is finite or if it can be put in one-one correspondence with $\mathbb{N} = \{0, 1, ...\}$, the set of natural numbers.
 - Set of integers \mathbb{Z} .

*
$$0 \leftrightarrow 0, 1 \leftrightarrow 1, 2 \leftrightarrow 3, 3 \leftrightarrow 5, \dots, -1 \leftrightarrow 2, -2 \leftrightarrow 4, -3 \leftrightarrow 6, \dots$$

- Set of positive integers \mathbb{Z}^+ : $i-1 \leftrightarrow i$.
- Set of odd integers: $(i-1)/2 \leftrightarrow i$.
- Set of rational numbers: See next page.
- Set of squared integers: $i \leftrightarrow \sqrt{i}$.



Cardinality

- For any set A, define |A| as A's **cardinality** (size).
- Two sets are said to have the same cardinality, or

$$|A| = |B|$$
 or $A \sim B$,

if there exists a one-to-one correspondence between their elements.

- 2^A denotes set A's **power set**, that is $\{B : B \subseteq A\}$.
 - If |A| = k, then $|2^A| = 2^k$.
 - So $|A| < |2^A|$ when A is finite.

Cardinality (concluded)

- $|A| \leq |B|$ if there is a one-to-one correspondence between A and one of B's subsets.
- |A| < |B| if $|A| \le |B|$ but $|A| \ne |B|$.
- If $A \subseteq B$, then $|A| \le |B|$.
- But if $A \subsetneq B$, then |A| < |B|?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet |A| = |B|.
 - The set of integers *properly* contains the set of odd integers.
 - But the set of integers has the same cardinality as the set of odd integers (p. 107).
- A lot of "paradoxes."

Hilbert's Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now let us imagine a hotel with an infinite number of rooms, and all the rooms are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor, and he moves the person previously occupying Room 1 into Room 2, the person from Room 2 into Room 3, and so on
- The new customer occupies Room 1.

^aDavid Hilbert (1862–1943).

Hilbert's Paradox of the Grand Hotel (concluded)

- Let us imagine now a hotel with an infinite number of rooms, all taken up, and an infinite number of new guests who come in and ask for rooms.
- "Certainly, gentlemen," says the proprietor, "just wait a minute."
- He moves the occupant of Room 1 into Room 2, the occupant of Room 2 into Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

David Hilbert (1862–1943)

Galileo's^a Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid^b that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

^aGalileo (1564–1642).

^bEuclid (325 B.C.–265 B.C.).

Cantor's^a Theorem

Theorem 7 The set of all subsets of \mathbb{N} ($2^{\mathbb{N}}$) is infinite and not countable.

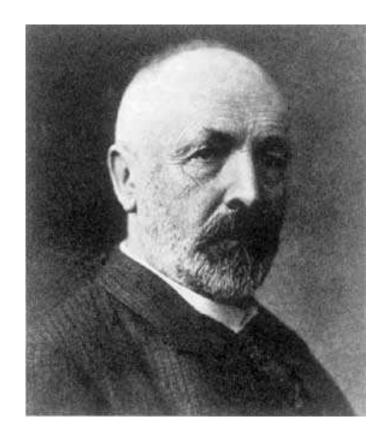
- Suppose it is countable with $f: \mathbb{N} \to 2^{\mathbb{N}}$ being a bijection.
- Consider the set $B = \{k \in \mathbb{N} : k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose B = f(n) for some $n \in \mathbb{N}$.

^aGeorg Cantor (1845–1918). According to Kac and Ulam, "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

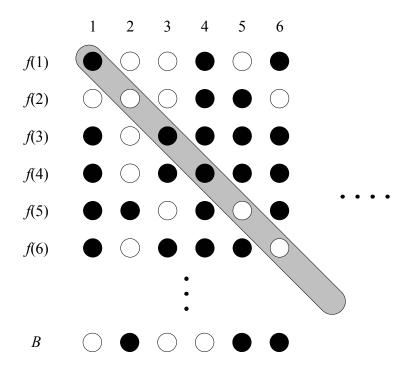
The Proof (concluded)

- If $n \in f(n) = B$, then $n \in B$, but then $n \notin B$ by B's definition.
- If $n \notin f(n) = B$, then $n \notin B$, but then $n \in B$ by B's definition.
- Hence $B \neq f(n)$ for any n.
- \bullet f is not a bijection, a contradiction.

Georg Cantor (1845–1918)



Cantor's Diagonalization Argument Illustrated



A Corollary of Cantor's Theorem

Corollary 8 For any set T, finite or infinite,

$$|T| < |2^T|.$$

- The inequality holds in the finite T case.
- Assume T is infinite now.
- To prove $|T| \leq |2^T|$, simply consider $f(x) = \{x\} \in 2^T$.
- To prove the strict inequality $|T| \leq |2^T|$, we use the same argument as Cantor's theorem.

A Second Corollary of Cantor's Theorem

Corollary 9 The set of all functions on \mathbb{N} is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0,1\}$.
- Every such function $f: \mathbb{N} \to \{0,1\}$ determines a set

$${n: f(n) = 1} \subseteq \mathbb{N}$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $|2^{\mathbb{N}}|$.
- Corollary 8 (p. 120) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0s and 1s, thus a nonnegative integer.
- Hence every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 9 (p. 121).
- So there are functions for which no programs exist.

Universal Turing Machine^a

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
 - Both M and x are over the alphabet of U.
- U simulates M on x so that

$$U(M;x) = M(x).$$

• *U* is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

^aTuring (1936).

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 122).
- We now define a concrete undecidable problem, the halting problem:

$$H = \{M; x : M(x) \neq \nearrow\}.$$

- Does M halt on input x?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If M(x) diverges, so does U.
- This TM accepts H.
- Membership of x in any recursively enumerative language accepted by M can be answered by asking

$$M; x \in H$$
?

H Is Not Recursive

- Suppose there is a TM M_H that decides H.
- Consider the program D(M) that calls M_H :
 - 1: **if** $M_H(M; M) =$ "yes" **then**
 - 2: /; {Writing an infinite loop is easy, right?}
 - 3: **else**
 - 4: "yes";
 - 5: **end if**
- Consider D(D):
 - $-D(D) = \nearrow \Rightarrow M_H(D; D) = \text{"yes"} \Rightarrow D; D \in H \Rightarrow D(D) \neq \nearrow$, a contradiction.
 - $-D(D) = \text{"yes"} \Rightarrow M_H(D; D) = \text{"no"} \Rightarrow D; D \notin H \Rightarrow D(D) = \nearrow$, a contradiction.

Comments

- Two levels of interpretations of M:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes.
 - Concepts should be familiar to computer scientists.
 - Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets.^a

- Then $2^T \subseteq T$ because 2^T is a set.
- But we know $|2^T| > |T|$ (p. 120)!
- We got a "contradiction."
- So what gives?
- Are we willing to give up Cantor's theorem?
- If not, what is a set?

^aRecall this ontological argument for the existence of God by St Anselm (-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.

Self-Loop Paradoxes (continued)

Russell's Paradox (1901): Consider $R = \{A : A \notin A\}$.

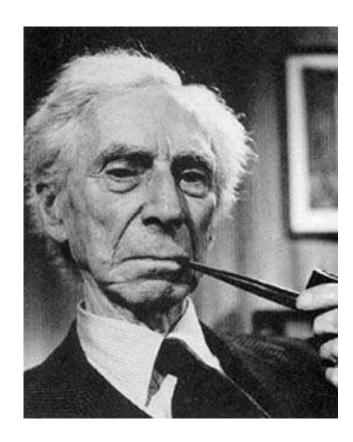
- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction."

Eubulides: The Cretan says, "All Cretans are liars."

Liar's Paradox: "This sentence is false."

Hypochondriac: a patient with imaginary symptoms and ailments.

Bertrand Russell (1872–1970)



Self-Loop Paradoxes (concluded)

Sharon Stone in *The Specialist* (1994): "I'm not a woman you can trust."

Spin City: "I am not gay, but my boyfriend is."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world $[\cdots]$ " (attributed to Moses).

Self-Loop Paradoxes and Turing Machine?^a

- Can self-loop paradoxes happen to Turing machine?
- If so, will it shake the foundation of the theory of computation?
- If not, why?

^aContributed by a student at Vanung University on June 6, 2008.

Reductions in Proving Undecidability

- \bullet Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (called reduction) R such that^a

$$\forall x \ \{R(x) \in L \text{ if and only if } x \in H\}.$$

- We can answer " $x \in H$?" for any x by asking " $R(x) \in L$?" instead.
- This suffices to prove that L is undecidable.

^aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

More Undecidability

- $H^* = \{M : M \text{ halts on all inputs}\}.$
 - Given the question " $M; x \in H$?" we construct the following machine:^a

$$M_x(y):M(x).$$

- $-M_x$ halts on all inputs if and only if M halts on x.
- In other words, $M_x \in H^*$ if and only if $M; x \in H$.
- So if the said language were recursive, H would be recursive, a contradiction.

^aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

More Undecidability (concluded)

- $\{M; x : \text{there is a } y \text{ such that } M(x) = y\}.$
- $\{M; x : \text{the computation } M \text{ on input } x \text{ uses all states of } M\}.$
- $\{M; x; y : M(x) = y\}.$

Complements of Recursive Languages

Lemma 10 If L is recursive, then so is \bar{L} .

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L} .

Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M} , respectively.
- Simulate M and \overline{M} in an interleaved fashion.
- If M accepts, then $x \in L$ and M' halts on state "yes."
- If \overline{M} accepts, then $x \notin L$ and M' halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 11 (p. 137), L is recursive, a contradiction.

Corollary 13 \bar{H} is not recursively enumerable.

R, RE, and coRE

RE: The set of all recursively enumerable languages.

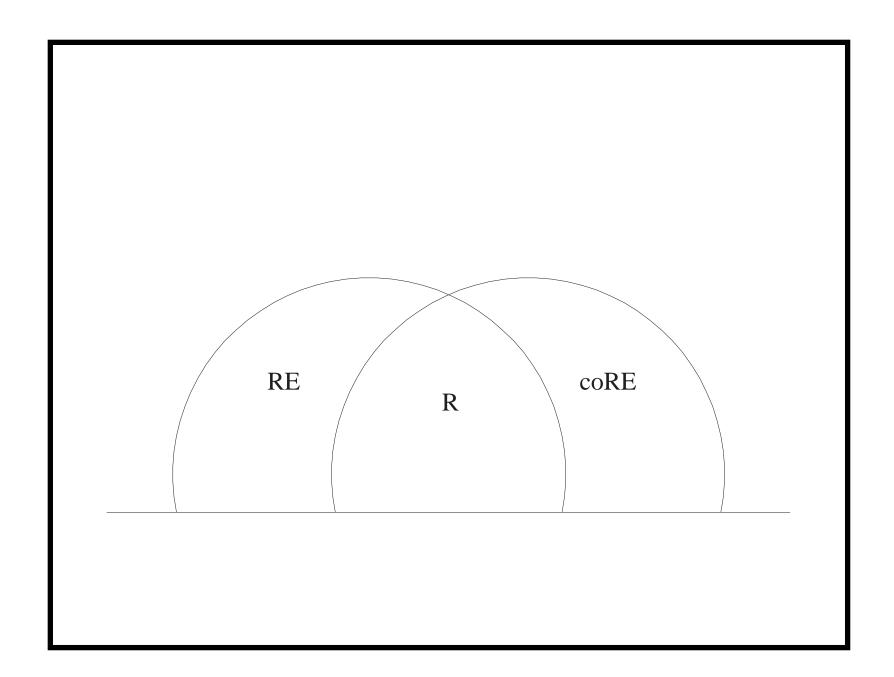
coRE: The set of all languages whose complements are recursively enumerable (note that $\overline{\text{RE}}$).

- $core = \{ L : \overline{L} \in RE \}.$
- $\overline{RE} = \{ L : L \notin RE \}.$

R: The set of all recursive languages.

R, RE, and coRE (concluded)

- $R = RE \cap coRE$ (p. 137).
- There exist languages in RE but not in R and not in coRE.
 - Such as H (p. 125, p. 126, and p. 138).
- There are languages in coRE but not in RE.
 - Such as \bar{H} (p. 138).
- There are languages in neither RE nor coRE.



Undecidability in Logic and Mathematics

- First-order logic is undecidable.^a
- Natural numbers with addition and multiplication is undecidable.^b
- Rational numbers with addition and multiplication is undecidable.^c

^aChurch (1936).

^bRosser (1937).

^cRobinson (1948).

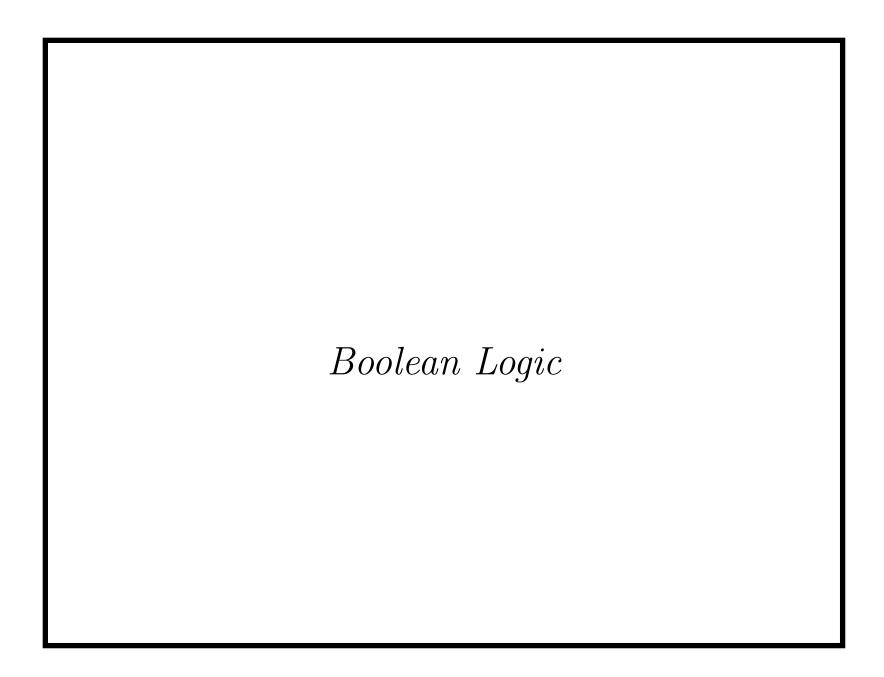
Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete.^a
- Elementary theory of groups is undecidable.^b

^aPresburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojzesz Presburger (1904–1943) died in Nazi's concentration camp.

^bTarski (1949).

Julia Hall Bowman Robinson (1919–1985)



Boolean Logic^a

Boolean variables: x_1, x_2, \ldots

Literals: x_i , $\neg x_i$.

Boolean connectives: \vee, \wedge, \neg .

Boolean expressions: Boolean variables, $\neg \phi$ (negation),

 $\phi_1 \vee \phi_2$ (disjunction), $\phi_1 \wedge \phi_2$ (conjunction).

- $\bigvee_{i=1}^n \phi_i$ stands for $\phi_1 \vee \phi_2 \vee \cdots \vee \phi_n$.
- $\bigwedge_{i=1}^n \phi_i$ stands for $\phi_1 \wedge \phi_2 \wedge \cdots \wedge \phi_n$.

Implications: $\phi_1 \Rightarrow \phi_2$ is a shorthand for $\neg \phi_1 \lor \phi_2$.

Biconditionals: $\phi_1 \Leftrightarrow \phi_2$ is a shorthand for

$$(\phi_1 \Rightarrow \phi_2) \land (\phi_2 \Rightarrow \phi_1).$$

^aGeorge Boole (1815–1864) in 1847.

Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is **appropriate** to boolean expression ϕ if it defines the truth value for every variable in ϕ .
 - $\{x_1 = \mathtt{true}, x_2 = \mathtt{false}\}\$ is appropriate to $x_1 \vee x_2$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ .
- ϕ_1 and ϕ_2 are **equivalent**, written

$$\phi_1 \equiv \phi_2$$
,

if for any truth assignment T appropriate to both of them, $T \models \phi_1$ if and only if $T \models \phi_2$.

- Equivalently, for any truth assignment T appropriate to both of them, $T \models (\phi_1 \Leftrightarrow \phi_2)$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A **truth table** contains 2^n rows, one for each possible truth assignment of the n variables together with the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
 - Check if they give identical truth values under all 2^n truth assignments.

A Truth Table
$p q \mid p \wedge q$
0 0 0
0 1 0
1 0 0
1 1 1

De Morgan's^a Laws

• De Morgan's laws say that

$$\neg(\phi_1 \land \phi_2) = \neg \phi_1 \lor \neg \phi_2,$$

$$\neg(\phi_1 \lor \phi_2) = \neg \phi_1 \land \neg \phi_2.$$

• Here is a proof for the first law:

ϕ_1	ϕ_2	$\neg(\phi_1 \land \phi_2)$	$\neg \phi_1 \vee \neg \phi_2$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

^aAugustus DeMorgan (1806–1871).

Conjunctive Normal Forms

• A boolean expression ϕ is in **conjunctive normal** form (CNF) if

$$\phi = \bigwedge_{i=1}^{n} C_i,$$

where each **clause** C_i is the disjunction of zero or more literals.^a

- For example, $(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_2 \lor x_3)$.
- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

^aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

Disjunctive Normal Forms

• A boolean expression ϕ is in **disjunctive normal form** (**DNF**) if

$$\phi = \bigvee_{i=1}^{n} D_i,$$

where each **implicant** D_i is the conjunction of one or more literals.

- For example,

$$(x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2) \vee (x_2 \wedge x_3).$$

Any Expression ϕ Can Be Converted into CNFs and DNFs

- $\phi = x_j$: This is trivially true.
- $\phi = \neg \phi_1$ and a CNF is sought: Turn ϕ_1 into a DNF and apply de Morgan's laws to make a CNF for ϕ .
- $\phi = \neg \phi_1$ and a DNF is sought: Turn ϕ_1 into a CNF and apply de Morgan's laws to make a DNF for ϕ .
- $\phi = \phi_1 \lor \phi_2$ and a **DNF** is sought: Make ϕ_1 and ϕ_2 DNFs.
- $\phi = \phi_1 \vee \phi_2$ and a CNF is sought: Let $\phi_1 = \bigwedge_{i=1}^{n_1} A_i$ and $\phi_2 = \bigwedge_{i=j}^{n_2} B_j$ be CNFs. Set

$$\phi = \bigwedge_{i=1}^{n_1} \bigwedge_{j=1}^{n_2} (A_i \vee B_j).$$

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)

 $\phi = \phi_1 \wedge \phi_2$ and a CNF is sought: Make ϕ_1 and ϕ_2 CNFs.

 $\phi = \phi_1 \wedge \phi_2$ and a DNF is sought: Let $\phi_1 = \bigvee_{i=1}^{n_1} A_i$ and $\phi_2 = \bigvee_{j=1}^{n_2} B_j$ be DNFs. Set

$$\phi = \bigvee_{i=1}^{n_1} \bigvee_{j=1}^{n_2} (A_i \wedge B_j).$$

An Example: Turn $\neg((a \land y) \lor (z \lor w))$ into a DNF

$$\neg((a \land y) \lor (z \lor w))$$

$$\neg(\text{CNF}\lor\text{CNF}) = \neg(((a) \land (y)) \lor (z \lor w))$$

$$\neg(\text{CNF}) = \neg((a \lor z \lor w) \land (y \lor z \lor w))$$

$$\stackrel{\text{de Morgan}}{=} \neg(a \lor z \lor w) \lor \neg(y \lor z \lor w)$$

$$= (\neg a \land \neg z \land \neg w) \lor (\neg y \land \neg z \land \neg w).$$