Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- We need to design a TM that accepts L.
- Let TM M decide L.
- We next modify M’s program to obtain M' that accepts L.
- M' is identical to M except that when M is about to halt with a “no” state, M' goes into an infinite loop.
- M' accepts L.
Turing-Computable Functions

• Let \(f : (\Sigma - \{\sqcup\})^* \rightarrow \Sigma^* \).

 – Optimization problems, root finding problems, etc.

• Let \(M \) be a TM with alphabet \(\Sigma \).

• \(M \) computes \(f \) if for any string \(x \in (\Sigma - \{\sqcup\})^* \),
 \(M(x) = f(x) \).

• We call \(f \) a \textbf{recursive function}a if such an \(M \) exists.

aKurt Gödel (1931).
Kurt Gödel (1906–1978)
Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are algorithms (Kleene 1953).

• Many other computation models have been proposed.
 – Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.

• No “intuitively computable” problems have been shown not to be Turing-computable (yet).
Church’s Thesis or the Church-Turing Thesis (concluded)

• The thesis may sound merely definitional at first.

• It can also be interpreted as\(^a\)

 a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a computer is not capable of any computational task that a Turing machine is incapable of.

\(^a\)Smith (1998).
Alonso Church (1903–1995)
Stephen Kleene (1909–1994)
Extended Church’s Thesis

• All “reasonably succinct encodings” of problems are *polynomially related*.
 – Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 – The *unary* representation of numbers is not succinct.
 – The *binary* representation of numbers is succinct.
 * 1001 vs. 11111111.

• All numbers for TMs will be binary from now on.
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta : K \times \Sigma^k \rightarrow (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (kth) string.
A 2-String TM

\[\delta \]

\[\begin{array}{c}
\Rightarrow 1000110000111001110001110 \\
\Rightarrow 111110000 \\
\end{array} \]
PALINDROME Revisited

- A 2-string TM can decide PALINDROME in $O(n)$ steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.
Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-triple

\[(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).\]

– \(w_iu_i\) is the \(i\)th string.
– The \(i\)th cursor is reading the last symbol of \(w_i\).
– Recall that \(\triangleright\) is each \(w_i\)'s first symbol.

• The \(k\)-string TM’s initial configuration is

\[
\left(s, \underbrace{\triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon}_{2k} \right). \]

\[
\begin{array}{cccc}
1 & 2 & 3 & k \\
\end{array}
\]
Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.

- If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.

- If $M(x) = \uparrow$, then the time required by M on x is ∞.

- Machine M operates within time $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
 - $|x|$ is the length of string x.

- Function $f(n)$ is a time bound for M.
Time Complexity Classes

- Suppose language $L \subseteq (\Sigma - \{\Box\})^*$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \text{TIME}(f(n))$.
- $\text{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\text{TIME}(f(n))$ is a complexity class.
 - PALINDROME is in $\text{TIME}(f(n))$, where $f(n) = O(n)$.

aHartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).
The Simulation Technique

Theorem 3 Given any k-string M operating within time $f(n)$, there exists a (single-string) M' operating within time $O(f(n)^2)$ such that $M(x) = M'(x)$ for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$ of M by configuration

$$(q, \triangleright w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft)$$

of M'.

- \triangleleft is a special delimiter.

- w'_i is w_i with the firsta and last symbols “primed.”

aThe first symbol is always \triangleright.
The Proof (continued)

• The “priming” is to ensure that M' knows which symbol is under the cursor for each simulated string.\(^a\)

• The initial configuration of M' is

\[
(s, \triangleright \triangleright' x \triangleleft \triangleright' \triangleleft \cdots \triangleright' \triangleleft \triangleleft).
\]

\(^a\)Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
The Proof (continued)

- We simulate each move of M thus:
 1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.
 - The transition functions of M' must also reflect it.
 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.
The Proof (continued)

• It is possible that some strings of M need to be lengthened.
 – The linear-time algorithm on p. 31 can be used for each such string.
• The simulation continues until M halts.
• M' erases all strings of M except the last one.
• Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.\(^a\)
• The length of the string of M' at any time is $O(kf(|x|))$.

\(^a\)We tacitly assume $f(n) \geq n$.
<table>
<thead>
<tr>
<th>string 1</th>
<th>string 2</th>
<th>string 3</th>
<th>string 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>string 1</td>
<td>string 2</td>
<td>string 3</td>
<td>string 4</td>
</tr>
</tbody>
</table>
The Proof (concluded)

- Simulating each step of M takes, per string of M, $O(kf(|x|))$ steps.
 - $O(f(|x|))$ steps to collect information.
 - $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

- M' takes $O(k^2f(|x|))$ steps to simulate each step of M because there are k strings.

- As there are $f(|x|)$ steps of M to simulate, M' operates within time $O(k^2f(|x|)^2)$.
Linear Speedupa

\textbf{Theorem 4} Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

aHartmanis and Stearns (1965).
Implications of the Speedup Theorem

- State size can be traded for speed.
 - \(m^k \cdot |\Sigma|^{3mk} \)-fold increase to gain a speedup of \(O(m) \).

- If \(f(n) = cn \) with \(c > 1 \), then \(c \) can be made arbitrarily close to 1.

- If \(f(n) \) is superlinear, say \(f(n) = 14n^2 + 31n \), then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - *Arbitrary* linear speedup can be achieved.
 - This justifies the asymptotic big-O notation.
• By the linear speedup theorem, any polynomial time bound can be represented by its leading term \(n^k \) for some \(k \geq 1 \).

• If \(L \) is a polynomially decidable language, it is in \(\text{TIME}(n^k) \) for some \(k \in \mathbb{N} \).
 – Clearly, \(\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1}) \).

• The union of all polynomially decidable languages is denoted by \(P \):
 \[
P = \bigcup_{k>0} \text{TIME}(n^k).
 \]

• Problems in \(P \) can be efficiently solved.
Space Complexity

- Consider a k-string TM M with input x.
- Assume non-\sqcup is never written over by \sqcup.\(^a\)
 - The purpose is not to artificially downplay the space requirement.
- If M halts in configuration

 \[(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k),\]

 then the space required by M on input x is $\sum_{i=1}^{k} |w_i u_i|$.

\(^a\)Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.
Space Complexity (continued)

• We do not charge the space used only for input and output.

• Let $k > 2$ be an integer.

• A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
 – The input string is read-only.
 – The last string, the output string, is write-only.
 – So the cursor never moves to the left.
 – The cursor of the input string does not wander off into the $_|$s.
Space Complexity (concluded)

• If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.

• Machine M operates within space bound $f(n)$ for $f : \mathbb{N} \to \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.
Space Complexity Classes

• Let L be a language.

• Then

$$L \in \text{SPACE}(f(n))$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

• $\text{SPACE}(f(n))$ is a set of languages.

 – $\text{PALINDROME} \in \text{SPACE}(\log n)$: Keep 3 counters.

• As in the linear speedup theorem (Theorem 4), constant coefficients do not matter.
Nondeterminisma

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.

- K, Σ, s are as before.

- $\Delta \subseteq K \times \Sigma \times (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times \Sigma \times \{←, →, −\}$ is a relation, not a function.b

 - For each state-symbol combination, there may be more than one next steps—or none at all.

aRabin and Scott (1959).

bCorrected by Mr. Chen, Jung-Ying (D95723006) on September 23, 2008.
Nondeterminism (concluded)

• Think of the program as lines of codes:

\[
(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,
\]

\[
(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,
\]

\[
(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.
\]

• A configuration yields another configuration in one step if there exists a rule in \(\Delta \) that makes this happen.
Michael O. Rabin (1931–)
Dana Stewart Scott (1932–)
Computation Tree and Computation Path

\[s \]

\[h \quad \text{“no”} \]

\[h \quad \text{“yes”} \]
Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in “yes.”
 - It is not required that the NTM halts in all computation paths.a
 - If $x \not\in L$, no nondeterministic choices should lead to a “yes” state.
- What is key is the algorithm’s overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.

aSo “accepts” may be a more proper term here.
An Example

- Let L be the set of logical conclusions of a set of axioms.
 - Predicates not in L may be false under the axioms.
 - They may also be independent of the axioms.
 * That is, they can be assumed true or false without contradicting the axioms.
An Example (concluded)

• Let ϕ be a predicate whose validity we would like to prove.

• Consider the nondeterministic algorithm:

 1: $b := \text{true}$;
 2: \textbf{while} the input predicate $\phi \neq b$ \textbf{do}
 3: Generate a logical conclusion of b by applying some of the axioms; \{Nondeterministic choice.\}
 4: Assign this conclusion to b;
 5: \textbf{end while}
 6: “yes”;

• This algorithm decides L.
Complementing a TM’s Halting States

• Let M decide L, and M' be M after “yes” \leftrightarrow “no”.

• If M is a (deterministic) TM, then M' decides \overline{L}.

• But if M is an NTM, then M' may not decide \overline{L}.
 – It is possible that both M and M' accept x (see next page).
 – When this happens, M and M' accept languages that are not complements of each other.
Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time $f(n)$, where $f : \mathbb{N} \rightarrow \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than $f(|x|)$.

• We charge only the “depth” of the computation tree.
Time Complexity Classes under Nondeterminism

- $\text{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.

- $\text{NTIME}(f(n))$ is a complexity class.
NP

- Define

\[NP = \bigcup_{k>0} \text{NTIME}(n^k). \]

- Clearly \(P \subseteq NP \).

- Think of NP as efficiently *verifiable* problems.
 - Boolean satisfiability (SAT).
 - TSP (D).

- The most important open problem in computer science is whether \(P = NP \).
Simulating Nondeterministic TMs

Surprisingly, nondeterminism does not add power to TMs.

Theorem 5 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic TM M in time $O(c^f(n))$, where $c > 1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search.
 - M does not know $f(n)$.
 - As N is time-bounded, the depth-first search will not run indefinitely.
The Proof (concluded)

- If some path leads to “yes,” then M enters the “yes” state.

- If none of the paths leads to “yes,” then M enters the “no” state.

Corollary 6 $\text{NTIME}(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)})$.

NTIME vs. TIME

• Does converting an NTM into a TM require exploring all of the computation paths of the NTM as done in Theorem 5 (p. 92)?

• This is the most important question in theory with practical implications.
A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.

1: for $i = 1, 2, \ldots, n$ do
2: Guess $x_i \in \{0, 1\}$; \{Nondeterministic choice.\}
3: end for
4: {Verification:}
5: if $\phi(x_1, x_2, \ldots, x_n) = 1$ then
6: "yes";
7: else
8: "no";
9: end if
The Computation Tree for Satisfiability

\[x_1 = 0 \]
\[x_2 = 1 \]
\[x_3 = 1 \]
\[x_4 = 0 \]
\[x_5 = 0 \]
\[x_6 = 1 \]
\[x_7 = 1 \]
\[x_8 = 0 \]
Analysis

• The algorithm decides language \(\{ \phi : \phi \text{ is satisfiable} \} \).
 - The computation tree is a complete binary tree of depth \(n \).
 - Every computation path corresponds to a particular truth assignment out of \(2^n \).
 - \(\phi \) is satisfiable if and only if there is a computation path (truth assignment) that results in “yes.”

• General paradigm: Guess a “proof” and then verify it.
The Traveling Salesman Problem

• We are given \(n \) cities 1, 2, \ldots, \(n \) and integer distances \(d_{ij} \) between any two cities \(i \) and \(j \).

• Assume \(d_{ij} = d_{ji} \) for convenience.

• The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.

• The decision version **TSP (D)** asks if there is a tour with a total distance at most \(B \), where \(B \) is an input.

• Both problems are extremely important but equally hard (p. 336 and p. 418).
A Nondeterministic Algorithm for TSP (D)

1: for $i = 1, 2, \ldots, n$ do
2: Guess $x_i \in \{1, 2, \ldots, n\}$; \{The ith city.\}\(^a\)
3: end for
4: $x_{n+1} := x_1$;
5: \{Verification stage:\}
6: if x_1, x_2, \ldots, x_n are distinct and $\sum_{i=1}^{n} d_{x_i, x_{i+1}} \leq B$ then
7: “yes”;
8: else
9: “no”;
10: end if

\(^a\)Can be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.