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Class Information

e Papadimitriou. Computational Complexity. 2nd
printing. Addison-Wesley. 1995.

— The best book on the market for graduate students.
— We more or less follow the topics of the book.

— More “advanced” materials may be added.

e You may want to review discrete mathematics.
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Class Information (concluded)

e More information and future lecture notes (in PDF
format) can be found at

www.csie.ntu.edu.tw/"1lyuu/complexity.html

— Homeworks and teaching assistants will be
announced there.
e Please ask many questions in class.

— The best way for me to remember you in a large

class.?

2“[A] science concentrator [...] said that in his eighth semester of
[Harvard] college, there was not a single science professor who could
identify him by name.” (New York Times, September 3, 2003.)
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Grading

No roll calls.

Homeworks.
— Do not copy others’ homeworks.

— Do not give your homeworks for others to copy.
Two to three examinations.
You must show up for the examinations, in person.

If you cannot make it to an examination, please email

me beforehand (unless there is a legitimate reason).

Missing the final examination will earn a “fail” grade.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4



Problems and Algorithms

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5



I have never done anything “useful.”

— Godfrey Harold Hardy (1877-1947),
A Mathematician’s Apology (1940)
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What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

e There are well-defined problems that cannot be

computed.

e In fact, “most” problems cannot be computed.
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What This Course Is All About (continued)

Complexity: What is a computable problem’s inherent

complexity?

e Some computable problems require at least

exponential time and/or space; they are intractable.
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What This Course Is All About (concluded)

e Some practical problems require superpolynomial
resources unless certain conjectures are disproved.
e Other resources besides time and space?

— Program size, circuit size, number of random bits,

VLSI layout area, etc.
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Tractability and Intractability

Polynomial in terms of the input size n defines

tractability.
— n, nlogn, n?, n%.

— Time, space, circuit size, number of random bits, etc.
It results in a fruitful and practical theory of complexity.
Few practical, tractable problems require a large degree.

Exponential-time or superpolynomial-time algorithms

are usually impractical.

— plogn vnraon nl  \/2rn (n/e)".

2Size of depth-3 circuits to compute the majority function (Wolfovitz
(2006)).
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Growth of Factorials

n!

n

n!

1
2
6
24

10
11
12
13
14
15
16

362,880
3,628,300
39,916,800
479,001,600
6,227,020,800
87,178,291,200
1,307,674,368,000
20,922,789,888,000
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Turing Machines
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Alan Turing (1912-1954)
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What Is Computation?

e That can be coded in an algorithm.?
e An algorithm is a detailed step-by-step method for
solving a problem.

— The Euclidean algorithm for the greatest common

divisor is an algorithm.

— “Let s be the least upper bound of compact set A” is

not an algorithm.

— “Let s be a smallest element of a finite-sized array”

can be solved by an algorithm.

aMuhammad ibn Misa Al-Khwarizmi (780-850).
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Turing Machines?®

A Turing machine (TM) is a quadruple M = (K, 3,9, s).
K is a finite set of states.
s € K is the initial state.

Y is a finite set of symbols (disjoint from K).

— Y includes | | (blank) and > (first symbol).
§0: K x¥— (KU{h, “yes”, “no” }) x ¥ x {+—,—,—} is a
transition function.

— « (left), — (right), and — (stay) signify cursor

movements.

2Turing (1936).
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A TM Schema

i

>1000110000111001110001110uuu
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“Physical” Interpretations

The tape: computer memory and registers.
0: program.

K instruction numbers.

s: “main()” in C.

>:: alphabet much like the ASCII code.
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More about ¢

e The program has the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

e Given current state ¢ € K and current symbol o € X,

6(q,0) = (p, p, D).

— It specifies the next state p, the symbol p to be
written over o, and the direction D the cursor will

move afterwards.

e We require §(q,>) = (p, >, —) so that the cursor never
falls off the left end of the string.
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More about ¢ (concluded)

e Think of the program as lines of codes:

4(q1,01) = (p1,p1,D1),
5(CI2, 02) — (p27 P2, D2)7

5(Qn70n) <pn7pnaDn>-

e Given the state ¢ and the symbol under the cursor o,

the machine finds the line that matches (¢, o).

e This line of code is then executed.
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The Operations of TMs

e Initially the state is s.

e The string on the tape is initialized to a >, followed by a
finite-length string x € (X — {| |})*.

x is the input of the TM.

— The input must not contain | |s (why?)!
The cursor is pointing to the first symbol, always a >.

The TM takes each step according to 9.

The cursor may overwrite | | to make the string longer

during the computation.
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Program Count

A program has a finite size.

Recall that
d: K xX¥— (KU{h,“yes”, “no”}) x ¥ x {«,—, —}.

So | K| x |3| “lines” suffice to specify a program, one line
per pair from K x X (| x| denotes the length of z).

Given K and X, there are

((|K|+3) x || x 3)/KIxI=

possible §’s (see next page).

— This is a constant—albeit large.
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ANY

\\\

(|K|+3)X|Z|X3
possibilities
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The Halting of a TM

e A TM M may halt in three cases.
“yes”: M accepts its input x, and M (x) = “yes”.

79

“no”: M rejects its input x, and M (z) = “no”.

h: M (x) = y means the string (tape) consists of a >,

followed by a finite string y, whose last symbol is not
| |, followed by a string of | [s.
— y is the output of the computation.

— y may be empty denoted by e.

e If M never halts on z, then write M (x) = .
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Why TMs?

Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

One can develop a complexity theory based on C++ or

Java, say.

But the added complexity does not yield additional

fundamental insights.

We will describe TMs in pseudocode.
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Remarks

e A problem is computable if there is a TM that halts

with the correct answer.

— If a TM (i.e., program) does not always halt, it does

not solve the problem, assuming the problem is

computable.?

2Contributed by Ms. Amy Liu (J94922016) on May 15, 2006. Control-

C is not a legitimate way to halt a program.
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Remarks (concluded)

e Any computation model must be physically realizable.

— A model that requires nearly infinite precision to
build is not physically realizable.

— For example, if the TM required a voltage of exactly
100 to work, it would not be considered a successful
model for computation.

Although a TM requires a tape of infinite length, which
is not realizable, it is not a major conceptual problem.?

e A tape of infinite length cannot be used to realize

infinite precision within a finite time span.”

@Thanks to a lively discussion on September 20, 2006.
PThanks to a lively discussion on September 20, 2006.
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The Concept of Configuration

e A configuration is a complete description of the
current state of the computation.

e The specification of a configuration is sufficient for the
computation to continue as if it had not been stopped.
— What does your PC save before it sleeps?

— Enough for it to resume work later.

e Similar to the concept of Markov process in stochastic
processes or dynamic systems.
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Configurations (concluded)

e A configuration is a triple (g, w,u):
— q € K.
— w € X" is the string to the left of the cursor
(inclusive).
— u € X" is the string to the right of the cursor.

e Note that (w,u) describes both the string and the cursor
position.
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—

>1000110000111001110001110u1U

e w —=>1000110000.

e 4 =111001110001110.
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Yielding
Fix a TM M.

Configuration (q,w,u) yields configuration (¢’,w’,u") in one
step,
M ro
(Q7w7u) - (q , W U )7
if a step of M from configuration (g, w, u) results in

configuration (q',w’,u").

k
(g, w,u) 2 (¢',w',u'): Configuration (g, w,u) yields

configuration (q',w’,u’) in k € N steps.

(g, w,u) A (¢',w',u"): Configuration (¢, w,u) yields

configuration (q',w’,u").
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Example: How to Insert a Symbol

e We want to compute f(z) = az.

— The TM moves the last symbol of x to the right by

one position.

— It then moves the next to last symbol to the right,

and so on.

— The TM finally writes a in the first position.

e The total number of steps is O(n), where n is the length

of x.
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Palindromes

A string is a palindrome if it reads the same forwards
and backwards (e.g., 001100).

A TM program can be written to recognize palindromes:
— It matches the first character with the last character.

— It matches the second character with the next to last

character, etc. (see next page).

— “yes” for palindromes and “no” for nonpalindromes.

This program takes O(n?) steps.

Can we do better?
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100011000000100111
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A Matching Lower Bound for PALINDROME

Theorem 1 (Hennie (1965)) PALINDROME on

single-string TMs takes Q(n?) steps in the worst case.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34



The Proof: Setup

X <+—Mm—> y

100011 100111

\

Communication:; at
most log, | K| bits
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The Proof: Communications
P(z,y) = “yes” if and only if x = y.

Our input is more restricted; hence any lower bound
holds for the original problem.

Each communication between the two halves across the

cut is a state from K, hence of size O(1).

C(zx,y): the sequence of communications for palindrome

problem P(x,y) across the cut.

— This crossing sequence is a sequence of states from K.
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The Proof: Communications (concluded)

o C(x,z) # C(y,y) when z £ y.
— Suppose otherwise, C(z,z) = C(y,y).
— Then C(y,y) = C(x,y) by the cut-and-paste

argument (see next page).

— Hence P(z,y) has the same answer as P(y, y)!

e So C(x,x) is distinct for each .
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The Proof: Amount of Communications
Assume |z | = |y|=m =n/3.
| C(x, x) | is the number of times the cut is crossed.

We first seek a lower bound on the total number of

communications for n-bit palindromes:

> |G 2)].

xe{0,1}™

As C(x, ) is distinct for each x (p. 37), there are 2™
distinct C(x, z)s.

e Define

k= (m+1)log g2 —log g m—1+1log g (| K|—1).
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The Proof: Amount of Communications (continued)
e There are < | K |* distinct C(x, z)s with | C(z,z) | = i.

e Hence there are at most

m

K ' K k+1 1 K k+1 2m—|—1
Z‘K‘Z:| | S‘ ‘ _
i=0 [K[-1

[ K| —1
distinct C(x, x)s with |C(x,x) | < k.

e The rest must have |C(zx,x) | > k.

o At least 2™ — C(z,z)s have |C(x,x) | > k.
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The Proof: Amount of Communications (concluded)

e Thus

Y. ICa)| > > | Clz, @) |

xze€{0,1}™ x€{0,1}™,|C(x,x) |>k

2m—|—1
(=5

m
— 2

P —
m

e As k = O(m), the total number of communications is

> 1C(z,2)| =Q(m2m). (1)

x€{0,1}™
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The Proof (continued)

We now lower-bound the worst-case number of

communication points in the middle section.
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The Proof (continued)

C;(x,z) denotes the sequence of communications for

P(x,x) given the cut at position <.

Then > )", | C;(z, z) | is the number of steps spent in
the middle section for P(x,x).

Let T'(n) = max,ecqo.13m »_poq | Ci(z, ) |.

— T'(n) is the worst-case running time spent in the

middle section when dealing with any P(z,z) with

|z | = m.

Note that T'(n) > >"1" | | Ci(x, x) | for any x € {0,1}™.
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The Proof (continued)

2T (n)

>, T(n)

xe{0,1}™

> D |Ci(zx)

z€{0,1}m i=1

> Y | Ci(a,)]

i=1 2€{0,1}m
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The Proof (concluded)

e By the pigeonhole principle,® there exists an 1 < * < m,

S 1G] < 22,

m
xe{0,1}™

e Eq. (1) on p. 41 says that

> |Cis(z,2) | = Q(m2™).

xe{0,1}™

e Hence

2Dirichlet (1805—-1859).
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Comments on Lower-Bound Proofs

e They are usually difficult.
— Worthy of a Ph.D. degree.

e An algorithm whose running time matches a lower

bound means it is optimal.

— The simple O(n?) algorithm for PALINDROME is

optimal.

e This happens rarely and is model dependent.

— Searching, sorting, PALINDROME, matrix-vector

multiplication, etc.
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Decidability and Recursive Languages

Let L C (X —{||})* be a language, i.e., a set of strings
of symbols with a finite length.

— For example, {0,01, 10,210, 1010, ...}.

Let M be a TM such that for any string x:
— If x € L, then M (x) = “yes.”
— If x € L, then M(x) = “no.”

We say M decides L.

If L is decided by some TM, then L is recursive.

— Palindromes over {0,1}* are recursive.
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Acceptability and Recursively Enumerable Languages

e Let L C (X —{||})* be a language.

e Let M be a TM such that for any string x:
— If x € L, then M(x) = “yes.”
— If x & L, then M(x) ="

e We say M accepts L.
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Acceptability and Recursively Enumerable Languages
(concluded)

o If L is accepted by some TM, then L is a recursively

enumerable language.?

— A recursively enumerable language can be generated
by a TM, thus the name.

— That is, there is an algorithm such that for every

x € L, it will be printed out eventually.

2Post (1944).
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Emil Post (1897-1954)
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