Theory of Computation

Solutions to Homework 5

Problem 1. Let p, q be two distinct primes. Recall that the RSA function, shown on pages 551–558 in the slides, is $x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$. Show that the RSA function is not secure when q is restricted to be p + 2. That is, given the binary representations of pq, e and $x^e \mod pq$ as inputs, show how to compute $x \mod pq$ in time polynomial in the input length, provided the following conditions hold:

1. q = p + 2.

- 2. p and q are distinct primes.
- 3. e is odd and relatively prime to $\phi(pq)$.

Proof. Knowing q = p + 2 and the value of pq, one is able to recover p, q and therefore $\phi(pq) = (p-1)(q-1)$ in polynomial time by a binary search for the value $x \in \{1, \ldots, pq\}$ satisfying x(x+2) = pq.

We separate the discussion into four cases according to value of $gcd(x, pq) \in \{1, p, q, pq\}$, or equivalently, $gcd(x^e, pq)$ as p, q are distinct primes.

- 1. $x^e \mod pq$ is relatively prime to pq.
- 2. $x^e \mod pq$ is a multiple of p but not a multiple of q.
- 3. $x^e \mod pq$ is a multiple of q but not a multiple of p.
- 4. $x^e \mod pq$ is zero.

In case one, one applies the Euclidean algorithm to find an integer d with $ed \equiv 1 \mod \phi(pq)$. Now $x \mod pq$ equals $x^{ed} \mod pq$, which can be computed from $x^e \mod pq$ by the method of recursive doubling.

In case two, $x^e \mod q$ can be easily computed given $x^e \mod pq$. Then one finds by the Euclidean algorithm an integer d with $ed \equiv 1 \mod (q-1)$ and computes $x^{ed} \mod q$ by recursive doubling. This finds $x \mod q$ since it equals $x^{ed} \mod q$. Now knowing $x \mod q$ and $x \equiv 0 \mod p$ and observing that pis relatively prime to q, one can find $x \mod pq$ by applying the Euclidean algorithm as in the Chinese remainder theorem.

Case three is symmetric to case two.

Finally, in case four, pq divides x and $x \mod pq$ is zero.

Problem 2. Show that if SAT has no polynomial circuits, then $coNP \neq BPP$. (Hint: Adleman's theorem states that all languages in BPP have polynomial circuits.)

Proof. Assume that SAT has no polynomial circuits. As all languages in BPP have polynomial circuits by Adleman's theorem, NP \neq BPP. Hence

 $coNP \neq coBPP = BPP.$