Approximability

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 609

Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?
— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there NP problems that cannot be approximated
well (assuming NP # P)?

Are there NP problems that cannot be approximated at
all (assuming NP # P)?

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610

Some Definitions

Given an optimization problem, each problem
instance = has a set of feasible solutions F'(x).
Each feasible solution s € F'(x) has a cost ¢(s) € Z™.

— Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

— It is our objective function, e.g., total distance,

satisfaction, or cut size.

The optimum cost is OPT(x) = minge p(,) c(s) for a

minimization problem.

It is OPT(x) = maXse p(s) ¢(s) for a maximization

problem.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 611

Approximation Algorithms
e Let algorithm M on x returns a feasible solution.

e M is an e-approximation algorithm, where ¢ > 0, if

for all z,

c(M(z)) —opr(z)] _
max(OPT(x),c(M(x))) —
— For a minimization problem,

o(M(x)) — minye pa) ()
(M (x)) =€

— For a maximization problem,

MaXsep(z) €(5) — c(M(z))

MaXsc () C(S)

<e€

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612

Lower and Upper Bounds

e For a minimization problem,

minsEF(as) C(S)

min ofs) < e(M(2)) < =

minseF(x) C(S) .
MGy =€

— So approximation ratio

e For a maximization problem,

(1 —€) x SrenF@é) c(s) <c(M(x)) < s]énﬁ};) c(s). (10)

((M@) 5 q .

maXgc F(x) c(s) =

— So approximation ratio

e They are alternative definitions of e-approximation.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 613

Range Bounds
e takes values between 0 and 1.

For maximization problems, an e-approximation

algorithm returns solutions within | (1 — €¢) X OPT, OPT|.

For minimization problems, an e-approximation
OPT

algorithm returns solutions within [OPT, T |.

For each NP-complete optimization problem, we shall be
interested in determining the smallest ¢ for which there

is a polynomial-time e-approximation algorithm.

Sometimes € has no minimum value.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 614

Approximation Thresholds

The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

c-approximation algorithm.

The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

So we assume P # NP for the rest of the discussion.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 615

NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

This turns out to produce

c(M(z))
OPT(x)

= O(logn).

'n).

Hence the approximation ratio is ©(log™

It is not an e-approximation algorithm for any e < 1.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 616

A 0.5-Approximation Algorithm?

. C =)
. while F # () do

Delete an arbitrary edge { u,v } from F;

Delete edges incident with v and v from FE;

Add u and v to C; {Add 2 nodes to C' each time.}
. end while

. return C;

2Johnson (1974).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 617

Analysis
C' contains |C|/2 edges.
No two edges of C share a node.?

Any node cover must contain at least one node from

each of these edges.
This means that opT(G) > |C|/2.

S0
oPT(G)

— = >1/2.
o =Y

e The approximation threshold is < 0.5.P

2In fact, C is a mazrimal matching.
0.5 is also the lower bound for any “greedy” algorithms (see Davis

and Impagliazzo (2004)).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 618

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 619

The 0.5 Bound Is Tight for the Algorithm?

2Contributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 620

Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth

assignment that satisfies the most.
e MAX2SAT is already NP-complete (p. 289).

e Consider the more general k-MAXGSAT for constant k.

— Given a set of boolean expressions
O = {¢p1,P2,...,0m} in n variables.

— Each ¢; is a general expression involving k variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 621

A Probabilistic Interpretation of an Algorithm

e Fach ¢; involves exactly k variables and is satisfied by ¢;
of the 2% truth assignments.

e A random truth assignment € {0, 1}" satisfies ¢; with

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an expected

number
™m

p(®) = p(e)

1=1

of expressions ¢;.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 622

The Search Procedure

Clearly

% {p(®|z1 = true]) + p(P|x; = false]) }.

Select the t; € {true, false} such that p(®|xy; =11]) is

the larger one.
Note that p(®[x1 =t1]) > p(P).

Repeat with expression ®|x; = t1] until all variables z;
have been given truth values t; and all ¢; either true or

false.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 623

The Search Procedure (concluded)

e By our hill-climbing procedure,

p(Plzy =t1, 22 =12,..., 2,

p(Plz1 =t1, 22 =12])
p(®lz1 =11])
p(®).

e So at least p(®) expressions are satisfied by truth

assignment (t1,to,...,t,).

e The algorithm is deterministic.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 624

Approximation Analysis

The optimum is at most the number of satisfiable
¢;—i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum is

p(®) _ >.ip(#)

>
ZP(¢i)>O 1

The heuristic is a polynomial-time e-approximation

algorithm with € = 1 — miny,4,)>0 P(®s).

Because p(¢;) > 27, the heuristic is a polynomial-time

e-approximation algorithm with e =1 — 27,

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625

Back to MAXSAT
In MAXSAT, the ¢,’s are clauses.

Hence p(¢;) > 1/2, which happens when ¢; contains a

single literal.

And the heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

If the clauses have k distinct literals, p(¢;) = 1 — 27,

And the heuristic becomes a polynomial-time
e-approximation algorithm with e = 27,

— This is the best possible for £ > 3 unless P = NP.

2Johnson (1974).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 626

MAX CUT Revisited

e The NP-complete MAX CUT seeks to partition the nodes
of graph G = (V, E) into (S, V — S) so that there are as
many edges as possible between S and V — S (p. 317).

e Local search starts from a feasible solution and

performs “local” improvements until none are possible.

e Next we present a local search algorithm for MAX CUT.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 627

A 0.5-Approximation Algorithm for MAX CUT
. S =0
: while dv € V' whose switching sides results in a larger
cut do
Switch the side of v;
. end while

. return S;

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless

NP = ZPP.

2Goemans and Williamson (1995).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 628

Analysis

~— Optimal cut

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 629

Analysis (continued)

e Partition V =V; UV, U V3 U V4, where our algorithm
returns (V3 U Vs, V3 U Vy) and the optimum cut is
(Vl U Vg, VQ U V4)

e Let e;; be the number of edges between V; and V.

e For each node v € V7, its edges to V7 U V5 are
outnumbered by those to V3 U Vj.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 630

Analysis (continued)

e Considering all nodes in V; together, we have

2e11 +e12 <ej3+es

— The reason it is 2e11 is because each edge in V; is

counted twice.

e The above inequality implies

e12 < €13 + e14.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631

Analysis (concluded)

e Similarly,

€23 + €24
€23 1+ €13

€14 + €24

e Adding all four inequalities, dividing both sides by 2,
and adding the inequality

€14 + €23 < €14 + €23 + €13 + €24, We obtain

e12 + €34 + e14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632

Approximability, Unapproximability, and Between

e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.

— KNAPSACK has a threshold of 0 (see p. 636).
— But NODE COVER and MAXSAT have a threshold
larger than 0.
e The situation is maximally pessimistic for TSp: It
cannot be approximated unless P = NP (see p. 634).

— The approximation threshold of TSP is 1.

+ The threshold is 1/3 if the TSP satisfies the
triangular inequality.

— The same holds for INDEPENDENT SET.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633

Unapproximability of Tsp?

Theorem 77 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm for the
NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, E), construct a TSP with | V|
cities with distances

if{i,j} € £

otherwise

2Sahni and Gonzales (1976).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634

The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost |V] is returned.

— This tour must be a Hamiltonian cycle.

Vi

e Suppose a tour with at least one edge of length {—_ is

returned.

V]
1—e€-

— The total length of this tour is >

— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

— The optimum tour has a cost exceeding | V'|.

— Hence G has no Hamiltonian cycles.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635

KNAPSACK Has an Approximation Threshold of Zero?

Theorem 78 For any €, there is a polynomial-time

e-approximation algorithm for KNAPSACK.

e We have n weights wy, ws, ..., w, € Z*, a weight limit

W, and n values vy, vo,...,v, € ZT.P

e We must find an S C {1,2,...,n} such that
ZiES w; < W and Zie 5 U; 1s the largest possible.

2Ibarra and Kim (1975).
PIf the values are fractional, the result is slightly messier but the

main conclusion remains correct. Contributed by Mr. Jr-Ben Tian
(R92922045) on December 29, 2004.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 636

The Proof (continued)

Let

V = max{vi,va,...,Un}.

For 0 <i¢<nand 0<v<nV, define W(i,v) to be the
minimum weight attainable by selecting some among the

1 first items, so that their value is exactly v.
Start with W (0,v) = oo for all v.
Then, for 0 <17 < n,
Wi+ 1,v) =min{W(,v), W(,v — v11) + wis1}
Finally, pick the largest v such that W (n,v) < W.

The running time is O(n?V’), not polynomial time.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637

The Proof (continued)

e Key idea: Limit the number of precision bits.

1 aob | Ui

e Define

— This is equivalent to zeroing each v;’s last b bits.

e Given the instance x = (w1, ..., wy, W, v1,...,v,), we

define the approximate instance

/ / /
= (wyi,..., wy, W0, ...,0,).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638

The Proof (continued)

e Solving 2’ takes time O(n2V/2Y).
— The algorithm only performs subtractions on the

v;-related values.

— So these b bits can be removed from the calculations.

e The solution S’ is close to the optimum solution S:

Zviz Z'UQZZU?’;ZZ(U?;—T) EZvi—anb.

1€S’ €S’ 1€8 1€8 1€8

e Hence

Zvi Z Zvi—an.

1eS’ 1€S

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639

The Proof (continued)

e Without loss of generality, w; < W (otherwise item 7 is
redundant).

e |/ is a lower bound on OPT.

— Picking only the item with value V' is a legitimate
choice.

e The relative error from the optimum is < n2°/V as

Zies Ui — ZiES’ Vs < ZiES Ui — Zz’ES’ Us
D _ics Vi B

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640

The Proof (concluded)

e Truncate the last b = |log, - | bits of the values.

e The algorithm becomes e-approximate (see Eq. (9) on
p. 612).

e The running time is then O(n2V/2%) = O(n3/e), a

polynomial in n and 1/e.?

21t hence depends on the value of 1/e. Thanks to a lively class dis-

cussion on December 20, 2006.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 641

Pseudo-Polynomial-Time Algorithms

e Consider problems with inputs that consist of a

collection of integer parameters (TSP, KNAPSACK, etc.).

e An algorithm for such a problem whose running time is
a polynomial of the input length and the value (not
length) of the largest integer parameter is a
pseudo-polynomial-time algorithm.?

e On p. 637, we presented a pseudo-polynomial-time
algorithm for KNAPSACK that runs in time O(n?V).

e How about TSP (D), another NP-complete problem?

2Garey and Johnson (1978).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642

No Pseudo-Polynomial-Time Algorithms for TSP (D)

e By definition, a pseudo-polynomial-time algorithm
becomes polynomial-time if each integer parameter is
limited to having a value polynomial in the input length.

Corollary 40 (p. 333) showed that HAMILTONIAN PATH is
reducible to TSP (D) with weights 1 and 2.

As HAMILTONIAN PATH is NP-complete, TSP (D) cannot
have pseudo-polynomial-time algorithms unless P = NP.

TSP (D) is said to be strongly NP-hard.

Many weighted versions of NP-complete problems are
strongly NP-hard.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 643

Polynomial-Time Approximation Scheme

e Algorithm M is a polynomial-time approximation
scheme (PTAS) for a problem if:

— For each ¢ > 0 and instance x of the problem, M
runs in time polynomial (depending on ¢€) in |z |.
« Think of € as a constant.

— M is an e-approximation algorithm for every ¢ > 0.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 644

Fully Polynomial-Time Approximation Scheme

e A polynomial-time approximation scheme is fully
polynomial (FPTAS) if the running time depends

polynomially on |z | and 1/e.
— Maybe the best result for a “hard” problem.

— For instance, KNAPSACK is fully polynomial with a
running time of O(n3/¢) (p. 636).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645

Square of G
e Let G = (V,FE) be an undirected graph.

e G? has nodes {(v1,v3) : v1,v2 € V} and edges

H(u,u), (v,0)}: (u=vA{u, v} e E)V{uv} e E}

(1,2) (1,2 (1,3)

L C“}é%g@
X

()3 J ())
3,1 (3,2 (3,3

GZ

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646

Independent Sets of G and G?

Lemma 79 G(V, E) has an independent set of size k if and
only if G* has an independent set of size k.

e Suppose G has an independent set I C V of size k.

e {(u,v):u,v €I} is an independent set of size k* of G*.

(1,2) (1,2 1,3
K\%{

(32
GZ

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647

The Proof (continued)

e Suppose G2 has an independent set I? of size k2.

o U={u:3veV (uwv) € I?}is an independent set of G.

\

e | U | is the number of “rows” that the nodes in I? occupy.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648

The Proof (concluded)?®
If |U| >k, then we are done.
Now assume |U | < k.

As the k? nodes in I? cover fewer than k “rows,” there

must be a “row” in possession of > k nodes of I2.

Those > k£ nodes will be independent in G as each “row”
is a copy of G.

@Thanks to a lively class discussion on December 29, 2004.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649

Approximability of INDEPENDENT SET

e The approximation threshold of the maximum
independent set is either zero or one (it is one!).

Theorem 80 If there is a polynomial-time e-approximation
algorithm for INDEPENDENT SET for any 0 < € < 1, then

there is a polynomial-time approrimation scheme.

e Let G be a graph with a maximum independent set of
size k.

e Suppose there is an O(n')-time e-approximation
algorithm for INDEPENDENT SET.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650

The Proof (continued)

By Lemma 79 (p. 647), the maximum independent set of
(G? has size k2.

Apply the algorithm to G?.
The running time is O(n?").
The resulting independent set has size > (1 — €) k2.

By the construction in Lemma 79 (p. 647), we can
obtain an independent set of size > /(1 —¢) k2 for G.

Hence there is a (1 — /1 — €)-approximation algorithm
for INDEPENDENT SET by Eq. (10) on p. 613.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651

The Proof (concluded)

In general, we can apply the algorithm to G2' to obtain

an (1 — (1 — e)Q_E)—approximation algorithm for

INDEPENDENT SET.

The running time is n? *.2

log(1—e) -I ‘

Now ple é = ﬂog m

. log(1l—e¢)
. . V———————<
The running time becomes n les(d—<")

It is an €’-approximation algorithm for INDEPENDENT
SET.

21t is not fully polynomial.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652

Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 37, p. 311).

NODE COVER has an approximation threshold at most
0.5 (p. 618).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653

