Tackling Intractable Problems - Many important problems are NP-complete or worse. - **Heuristics** have been developed to attack them. - They are approximation algorithms. - How good are the approximations? - We are looking for theoretically *guaranteed* bounds, not "empirical" bounds. - Are there NP problems that cannot be approximated well (assuming $NP \neq P$)? - Are there NP problems that cannot be approximated at all (assuming $NP \neq P$)? #### Some Definitions - Given an **optimization problem**, each problem instance x has a set of **feasible solutions** F(x). - Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$. - Here, cost refers to the quality of the feasible solution, not the time required to obtain it. - It is our **objective function**, e.g., total distance, satisfaction, or cut size. - The **optimum cost** is $OPT(x) = \min_{s \in F(x)} c(s)$ for a minimization problem. - It is $OPT(x) = \max_{s \in F(x)} c(s)$ for a maximization problem. ## Approximation Algorithms - Let algorithm M on x returns a feasible solution. - M is an ϵ -approximation algorithm, where $\epsilon \geq 0$, if for all x, $$\frac{|c(M(x)) - \text{OPT}(x)|}{\max(\text{OPT}(x), c(M(x)))} \le \epsilon.$$ - For a minimization problem, $$\frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \le \epsilon.$$ - For a maximization problem, $$\frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \le \epsilon. \tag{9}$$ ## Lower and Upper Bounds • For a minimization problem, $$\min_{s \in F(x)} c(s) \le c(M(x)) \le \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}.$$ - So approximation ratio $\frac{\min_{s \in F(x)} c(s)}{c(M(x))} \ge 1 \epsilon$. - For a maximization problem, $$(1 - \epsilon) \times \max_{s \in F(x)} c(s) \le c(M(x)) \le \max_{s \in F(x)} c(s). \tag{10}$$ - So approximation ratio $\frac{c(M(x))}{\max_{s \in F(x)} c(s)} \ge 1 \epsilon$. - They are alternative definitions of ϵ -approximation. #### Range Bounds - ϵ takes values between 0 and 1. - For maximization problems, an ϵ -approximation algorithm returns solutions within $[(1 \epsilon) \times \text{OPT}, \text{OPT}]$. - For minimization problems, an ϵ -approximation algorithm returns solutions within [OPT, $\frac{OPT}{1-\epsilon}$]. - For each NP-complete optimization problem, we shall be interested in determining the *smallest* ϵ for which there is a polynomial-time ϵ -approximation algorithm. - Sometimes ϵ has no minimum value. #### Approximation Thresholds - The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ -approximation algorithm. - The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible). - If P = NP, then all optimization problems in NP have an approximation threshold of 0. - So we assume $P \neq NP$ for the rest of the discussion. #### NODE COVER - NODE COVER seeks the smallest $C \subseteq V$ in graph G = (V, E) such that for each edge in E, at least one of its endpoints is in C. - A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover. - This turns out to produce $$\frac{c(M(x))}{\text{OPT}(x)} = \Theta(\log n).$$ - Hence the approximation ratio is $\Theta(\log^{-1} n)$. - It is not an ϵ -approximation algorithm for any $\epsilon < 1$. ## A 0.5-Approximation Algorithm^a 1: $C := \emptyset$; 2: while $E \neq \emptyset$ do 3: Delete an arbitrary edge $\{u, v\}$ from E; 4: Delete edges incident with u and v from E; 5: Add u and v to C; {Add 2 nodes to C each time.} 6: end while 7: $\mathbf{return} \ C$; ^aJohnson (1974). ## **Analysis** - C contains |C|/2 edges. - No two edges of C share a node.^a - Any node cover must contain at least one node from each of these edges. - This means that $OPT(G) \ge |C|/2$. - So $$\frac{\mathrm{OPT}(G)}{|C|} \ge 1/2.$$ • The approximation threshold is ≤ 0.5 . $^{{}^{\}mathrm{a}}$ In fact, C is a maximal matching. ^b0.5 is also the lower bound for any "greedy" algorithms (see Davis and Impagliazzo (2004)). The 0.5 Bound Is Tight for the Algorithm^a $^{^{\}rm a} \rm Contributed$ by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. ## Maximum Satisfiability - Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most. - MAX2SAT is already NP-complete (p. 289). - Consider the more general k-MAXGSAT for constant k. - Given a set of boolean expressions $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\}$ in n variables. - Each ϕ_i is a general expression involving k variables. - -k-MAXGSAT seeks the truth assignment that satisfies the most expressions. ## A Probabilistic Interpretation of an Algorithm - Each ϕ_i involves exactly k variables and is satisfied by t_i of the 2^k truth assignments. - A random truth assignment $\in \{0,1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = t_i/2^k$. - $-p(\phi_i)$ is easy to calculate as k is a constant. - Hence a random truth assignment satisfies an expected number $$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$ of expressions ϕ_i . #### The Search Procedure • Clearly $$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \mathtt{true}]) + p(\Phi[x_1 = \mathtt{false}]) \}.$$ - Select the $t_1 \in \{\text{true}, \text{false}\}$ such that $p(\Phi[x_1 = t_1])$ is the larger one. - Note that $p(\Phi[x_1 = t_1]) \ge p(\Phi)$. - Repeat with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i either true or false. ## The Search Procedure (concluded) • By our hill-climbing procedure, $$p(\Phi[x_1 = t_1, x_2 = t_2, ..., x_n = t_n])$$ $\geq \cdots$ $\geq p(\Phi[x_1 = t_1, x_2 = t_2])$ $\geq p(\Phi[x_1 = t_1])$ $\geq p(\Phi).$ - So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \dots, t_n) . - The algorithm is deterministic. ## Approximation Analysis - The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$. - Hence the ratio of algorithm's output vs. the optimum is $$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$ - The heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 \min_{p(\phi_i) > 0} p(\phi_i)$. - Because $p(\phi_i) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 2^{-k}$. #### Back to MAXSAT - In MAXSAT, the ϕ_i 's are clauses. - Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal. - And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$. - If the clauses have k distinct literals, $p(\phi_i) = 1 2^{-k}$. - And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$. - This is the best possible for $k \geq 3$ unless P = NP. ^aJohnson (1974). #### MAX CUT Revisited - The NP-complete MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V S) so that there are as many edges as possible between S and V S (p. 317). - Local search starts from a feasible solution and performs "local" improvements until none are possible. - Next we present a local search algorithm for MAX CUT. ## A 0.5-Approximation Algorithm for MAX CUT - 1: $S := \emptyset$; - 2: **while** $\exists v \in V$ whose switching sides results in a larger cut **do** - 3: Switch the side of v; - 4: end while - 5: return S; - A 0.12-approximation algorithm exists.^a - 0.059-approximation algorithms do not exist unless NP = ZPP. ^aGoemans and Williamson (1995). ## Analysis (continued) - Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$ and the optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$. - Let e_{ij} be the number of edges between V_i and V_j . - For each node $v \in V_1$, its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$. - Otherwise, v would have been moved to $V_3 \cup V_4$ to improve the cut. ## Analysis (continued) - Considering all nodes in V_1 together, we have $2e_{11} + e_{12} \le e_{13} + e_{14}$ - The reason it is $2e_{11}$ is because each edge in V_1 is counted twice. - The above inequality implies $$e_{12} \le e_{13} + e_{14}$$. ## Analysis (concluded) • Similarly, $$e_{12} \leq e_{23} + e_{24}$$ $e_{34} \leq e_{23} + e_{13}$ $e_{34} \leq e_{14} + e_{24}$ • Adding all four inequalities, dividing both sides by 2, and adding the inequality $$e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$$, we obtain $$e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$$ • The above says our solution is at least half the optimum. ## Approximability, Unapproximability, and Between - KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1. - KNAPSACK has a threshold of 0 (see p. 636). - But NODE COVER and MAXSAT have a threshold larger than 0. - The situation is maximally pessimistic for TSP: It cannot be approximated unless P = NP (see p. 634). - The approximation threshold of TSP is 1. - * The threshold is 1/3 if the TSP satisfies the triangular inequality. - The same holds for INDEPENDENT SET. ## Unapproximability of TSP^a **Theorem 77** The approximation threshold of TSP is 1 unless P = NP. - Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$. - We shall construct a polynomial-time algorithm for the NP-complete HAMILTONIAN CYCLE. - Given any graph G = (V, E), construct a TSP with |V| cities with distances $$d_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E\\ \frac{|V|}{1 - \epsilon}, & \text{otherwise} \end{cases}$$ ^aSahni and Gonzales (1976). # The Proof (concluded) - Run the alleged approximation algorithm on this TSP. - Suppose a tour of cost |V| is returned. - This tour must be a Hamiltonian cycle. - Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned. - The total length of this tour is $> \frac{|V|}{1-\epsilon}$. - Because the algorithm is ϵ -approximate, the optimum is at least 1ϵ times the returned tour's length. - The optimum tour has a cost exceeding |V|. - Hence G has no Hamiltonian cycles. ## KNAPSACK Has an Approximation Threshold of Zero^a **Theorem 78** For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK. - We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$. - We must find an $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is the largest possible. ^aIbarra and Kim (1975). ^bIf the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (R92922045) on December 29, 2004. • Let $$V = \max\{v_1, v_2, \dots, v_n\}.$$ - For $0 \le i \le n$ and $0 \le v \le nV$, define W(i, v) to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v. - Start with $W(0, v) = \infty$ for all v. - Then, for $0 \le i < n$, $$W(i+1,v) = \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}.$$ - Finally, pick the largest v such that $W(n, v) \leq W$. - The running time is $O(n^2V)$, not polynomial time. - Key idea: Limit the number of precision bits. - Define $$v_i' = 2^b \left\lfloor \frac{v_i}{2^b} \right\rfloor.$$ - This is equivalent to zeroing each v_i 's last b bits. - Given the instance $x = (w_1, \dots, w_n, W, v_1, \dots, v_n)$, we define the approximate instance $$x' = (w_1, \dots, w_n, W, v'_1, \dots, v'_n).$$ - Solving x' takes time $O(n^2V/2^b)$. - The algorithm only performs subtractions on the v_i -related values. - So these b bits can be removed from the calculations. - The solution S' is close to the optimum solution S: $$\sum_{i \in S'} v_i \ge \sum_{i \in S'} v_i' \ge \sum_{i \in S} v_i' \ge \sum_{i \in S} (v_i - 2^b) \ge \sum_{i \in S} v_i - n2^b.$$ • Hence $$\sum_{i \in S'} v_i \ge \sum_{i \in S} v_i - n2^b.$$ - Without loss of generality, $w_i \leq W$ (otherwise item i is redundant). - \bullet V is a lower bound on OPT. - Picking only the item with value V is a legitimate choice. - The relative error from the optimum is $\leq n2^b/V$ as $$\frac{\sum_{i \in S} v_i - \sum_{i \in S'} v_i}{\sum_{i \in S} v_i} \le \frac{\sum_{i \in S} v_i - \sum_{i \in S'} v_i}{V} \le \frac{n2^b}{V}.$$ ## The Proof (concluded) - Truncate the last $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$ bits of the values. - The algorithm becomes ϵ -approximate (see Eq. (9) on p. 612). - The running time is then $O(n^2V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$. ^aIt hence depends on the *value* of $1/\epsilon$. Thanks to a lively class discussion on December 20, 2006. ## Pseudo-Polynomial-Time Algorithms - Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.). - An algorithm for such a problem whose running time is a polynomial of the input length and the *value* (not length) of the largest integer parameter is a **pseudo-polynomial-time algorithm**.^a - On p. 637, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O(n^2V)$. - How about TSP (D), another NP-complete problem? ^aGarey and Johnson (1978). ## No Pseudo-Polynomial-Time Algorithms for TSP (D) - By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a *value* polynomial in the input length. - Corollary 40 (p. 333) showed that HAMILTONIAN PATH is reducible to TSP (D) with weights 1 and 2. - As Hamiltonian path is NP-complete, TSP (D) cannot have pseudo-polynomial-time algorithms unless P = NP. - TSP (D) is said to be **strongly NP-hard**. - Many weighted versions of NP-complete problems are strongly NP-hard. ## Polynomial-Time Approximation Scheme - Algorithm M is a **polynomial-time approximation** scheme (**PTAS**) for a problem if: - For each $\epsilon > 0$ and instance x of the problem, M runs in time polynomial (depending on ϵ) in |x|. - * Think of ϵ as a constant. - M is an ϵ -approximation algorithm for every $\epsilon > 0$. ## Fully Polynomial-Time Approximation Scheme - A polynomial-time approximation scheme is **fully polynomial** (**FPTAS**) if the running time depends polynomially on |x| and $1/\epsilon$. - Maybe the best result for a "hard" problem. - For instance, KNAPSACK is fully polynomial with a running time of $O(n^3/\epsilon)$ (p. 636). ## Square of G - Let G = (V, E) be an undirected graph. - G^2 has nodes $\{(v_1, v_2) : v_1, v_2 \in V\}$ and edges $$\{\{(u, u'), (v, v')\}: (u = v \land \{u', v'\} \in E) \lor \{u, v\} \in E\}.$$ ## Independent Sets of G and G^2 **Lemma 79** G(V, E) has an independent set of size k if and only if G^2 has an independent set of size k^2 . - Suppose G has an independent set $I \subseteq V$ of size k. - $\{(u,v):u,v\in I\}$ is an independent set of size k^2 of G^2 . - Suppose G^2 has an independent set I^2 of size k^2 . - $U \equiv \{u : \exists v \in V (u, v) \in I^2\}$ is an independent set of G. • |U| is the number of "rows" that the nodes in I^2 occupy. ## The Proof (concluded)^a - If $|U| \ge k$, then we are done. - Now assume |U| < k. - As the k^2 nodes in I^2 cover fewer than k "rows," there must be a "row" in possession of > k nodes of I^2 . - Those > k nodes will be independent in G as each "row" is a copy of G. ^aThanks to a lively class discussion on December 29, 2004. ## Approximability of INDEPENDENT SET • The approximation threshold of the maximum independent set is either zero or one (it is one!). **Theorem 80** If there is a polynomial-time ϵ -approximation algorithm for INDEPENDENT SET for any $0 < \epsilon < 1$, then there is a polynomial-time approximation scheme. - Let G be a graph with a maximum independent set of size k. - Suppose there is an $O(n^i)$ -time ϵ -approximation algorithm for INDEPENDENT SET. - By Lemma 79 (p. 647), the maximum independent set of G^2 has size k^2 . - Apply the algorithm to G^2 . - The running time is $O(n^{2i})$. - The resulting independent set has size $\geq (1 \epsilon) k^2$. - By the construction in Lemma 79 (p. 647), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon)k^2}$ for G. - Hence there is a $(1 \sqrt{1 \epsilon})$ -approximation algorithm for INDEPENDENT SET by Eq. (10) on p. 613. ## The Proof (concluded) - In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $(1 (1 \epsilon)^{2^{-\ell}})$ -approximation algorithm for INDEPENDENT SET. - The running time is $n^{2^{\ell}i}$.a - Now pick $\ell = \lceil \log \frac{\log(1-\epsilon)}{\log(1-\epsilon')} \rceil$. - The running time becomes $n^{i\frac{\log(1-\epsilon)}{\log(1-\epsilon')}}$. - It is an ϵ' -approximation algorithm for INDEPENDENT SET. ^aIt is not fully polynomial. #### Comments - INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 37, p. 311). - NODE COVER has an approximation threshold at most 0.5 (p. 618). - But INDEPENDENT SET is unapproximable (see the textbook). - INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET. - k-DEGREE INDEPENDENT SET is approximable (see the textbook).