
Undecidability
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It seemed unworthy of a grown man
to spend his time on such trivialities,

but what was I to do?
— Bertrand Russell (1872–1970),

Autobiography, Vol. I
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Infinite Sets

• A set is countable if it is finite or if it can be put in
one-one correspondence with N = { 0, 1, . . . }, the set of
natural numbers.

– Set of integers Z.
∗ 0 ↔ 0, 1 ↔ 1, 2 ↔ 3, 3 ↔ 5, . . . ,−1 ↔ 2,−2 ↔

4,−3 ↔ 6, . . ..

– Set of positive integers Z+: i− 1 ↔ i.

– Set of odd integers: (i− 1)/2 ↔ i.

– Set of rational numbers: See next page.

– Set of squared integers: i ↔ √
i .
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Rational Numbers Are Countable
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Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, or

|A| = |B| or A ∼ B,

if there exists a one-to-one correspondence between their
elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– If |A| = k, then |2A| = 2k.

– So |A| < |2A| when A is finite.
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Cardinality (concluded)

• |A| ≤ |B| if there is a one-to-one correspondence
between A and one of B’s subsets.

• |A| < |B| if |A| ≤ |B| but |A| 6= |B|.
• If A ⊆ B, then |A| ≤ |B|.
• But if A ( B, then |A| < |B|?
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Cardinality and Infinite Sets

• If A and B are infinite sets, it is possible that A ( B yet
|A| = |B|.
– The set of integers properly contains the set of odd

integers.

– But the set of integers has the same cardinality as
the set of odd integers (p. 105).

• A lot of “paradoxes.”
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Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the
rooms occupied, a new guest will be turned away.

• Now let us imagine a hotel with an infinite number of
rooms, and all the rooms are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor, and he moves
the person previously occupying Room 1 into Room 2,
the person from Room 2 into Room 3, and so on . . ..

• The new customer occupies Room 1.
aDavid Hilbert (1862–1943).
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Hilbert’s Paradox of the Grand Hotel (concluded)

• Let us imagine now a hotel with an infinite number of
rooms, all taken up, and an infinite number of new
guests who come in and ask for rooms.

• “Certainly, gentlemen,” says the proprietor, “just wait a
minute.”

• He moves the occupant of Room 1 into Room 2, the
occupant of Room 2 into Room 4, and so on.

• Now all odd-numbered rooms become free and the
infinity of new guests can be accommodated in them.

• “There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)
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David Hilbert (1862–1943)
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Galileo’sa Paradox (1638)

• The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

• This is contrary to the axiom of Euclidb that the whole
is greater than any of its proper parts.

• Resolution of paradoxes: Pick the notion that results in
“better” mathematics.

• The difference between a mathematical paradox and a
contradiction is often a matter of opinion.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
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Cantor’sa Theorem

Theorem 7 The set of all subsets of N (2N) is infinite and
not countable.

• Suppose it is countable with f : N→ 2N being a
bijection.

• Consider the set B = {k ∈ N : k 6∈ f(k)} ⊆ N.

• Suppose B = f(n) for some n ∈ N.

aGeorg Cantor (1845–1918). According to Kac and Ulam, “[If] one

had to name a single person whose work has had the most decisive in-

fluence on the present spirit of mathematics, it would almost surely be

Georg Cantor.”
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The Proof (concluded)

• If n ∈ f(n) = B, then n ∈ B, but then n 6∈ B by B’s
definition.

• If n 6∈ f(n) = B, then n 6∈ B, but then n ∈ B by B’s
definition.

• Hence B 6= f(n) for any n.

• f is not a bijection, a contradiction.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115



Georg Cantor (1845–1918)
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Cantor’s Diagonalization Argument Illustrated

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

B

1 2 3 4 5 6
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A Corollary of Cantor’s Theorem

Corollary 8 For any set T , finite or infinite,

|T | < | 2T |.

• The inequality holds in the finite T case.

• Assume T is infinite now.

• |T | ≤ |2T |: Consider f(x) = {x}.
• The strict inequality uses the same argument as

Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 9 The set of all functions on N is not countable.

• It suffices to prove it for functions from N to {0, 1}.
• Every such function f : N→ {0, 1} determines a set

{n : f(n) = 1} ⊆ N

and vice versa.

• So the set of functions from N to {0, 1} has cardinality
| 2N |.

• Corollary 8 (p. 118) then implies the claim.
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Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a
nonnegative integer.

• Hence every program corresponds to some integer.

• The set of programs is countable.

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 9
(p. 119).

• So there are functions for which no programs exist.
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Universal Turing Machinea

• A universal Turing machine U interprets the input
as the description of a TM M concatenated with the
description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which
executes any valid bytecode.

aTuring (1936).
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The Halting Problem

• Undecidable problems are problems that have no
algorithms or languages that are not recursive.

• We knew undecidable problems exist (p. 120).

• We now define a concrete undecidable problem, the
halting problem:

H = {M ; x : M(x) 6=↗}.

– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.

• Membership of x in any recursively enumerative
language accepted by M can be answered by asking

M ; x ∈ H?
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H Is Not Recursive

• Suppose there is a TM MH that decides H.

• Consider the program D(M) that calls MH :
1: if MH(M ; M) = “yes” then

2: ↗; {Writing an infinite loop is easy, right?}
3: else

4: “yes”;

5: end if

• Consider D(D):

– D(D) =↗⇒ MH(D; D) = “yes” ⇒ D; D ∈ H ⇒
D(D) 6=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D; D) = “no” ⇒ D; D 6∈ H ⇒
D(D) =↗, a contradiction.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 124



Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes.

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter
to a Lisp interpreter, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.a

• Then 2T ⊆ T because 2T is a set.

• But we know | 2T | > |T | (p. 118)!

• We got a “contradiction.”

• So what gives?

• Are we willing to give up Cantor’s theorem?

• If not, what is a set?
aRecall this ontological argument for the existence of God by

St Anselm (–1109) in the 11th century: If something is possible but is

not part of God, then God is not the greatest possible object of thought,

a contradiction.
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Self-Loop Paradoxes (continued)

Russell’s Paradox (1901): Consider R = {A : A 6∈ A}.
• If R ∈ R, then R 6∈ R by definition.

• If R 6∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient with imaginary symptoms and
ailments.
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Bertrand Russell (1872–1970)
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Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): “I’m not a
woman you can trust.”

Spin City: “I am not gay, but my boyfriend is.”

Numbers 12:3, Old Testament: “Moses was the most
humble person in all the world [· · · ]” (attributed to
Moses).
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More Undecidability

• H∗ = {M : M halts on all inputs}.
– Given M ;x, we construct the following machine:a

Mx(y) : M(x).

– Mx halts on all inputs if and only if M halts on x.

– In other words, Mx ∈ H∗ if and only if M ;x ∈ H.

– So if the said language were recursive, H would be
recursive, a contradiction.

– This technique is called reduction.
aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.
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More Undecidability (concluded)

• {M ; x : there is a y such that M(x) = y}.
• {M ; x : the computation M on input x uses all states of M}.

• {M ; x; y : M(x) = y}.
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Reductions in Proving Undecidability

• Suppose we are asked to prove L is undecidable.

• Language H is known to be undecidable.

• We try to find a computable transformation (called
reduction) R such thata

∀x{R(x) ∈ L if and only if x ∈ H}.

• We can answer “x ∈ H?” for any x by asking R(x) ∈ L?

• This suffices to prove that L is undecidable.
aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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Complements of Recursive Languages

Lemma 10 If L is recursive, then so is L̄.

• Let L be decided by M (which is deterministic).

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.
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Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and L̄ are
recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,
accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then x ∈ L and M ′ halts on state “yes.”

• If M̄ accepts, then x 6∈ L and M ′ halts on state “no.”
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A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive,
then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 11 (p. 134), L is recursive, a contradiction.

Corollary 13 H̄ is not recursively enumerable.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are
recursively enumerable (note that coRE is not RE).

• coRE = {L : L ∈ RE }.
• RE = {L : L 6∈ RE }.

R: The set of all recursive languages.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 134).

• There exist languages in RE but not in R and not in
coRE.

– Such as H (p. 123, p. 124, and p. 135).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 135).

• There are languages in neither RE nor coRE.
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R

coRE
RE
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Undecidability in Logic and Mathematics

• First-order logic is undecidable.a

• Natural numbers with addition and multiplication is
undecidable.b

• Rational numbers with addition and multiplication is
undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable
and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in Nazi’s concentration camp.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)
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Boolean Logic
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

• ∨n
i=1 φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

• ∧n
i=1 φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aGeorge Boole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean
variables to truth values true and false.

• A truth assignment is appropriate to boolean
expression φ if it defines the truth value for every
variable in φ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.
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Satisfaction

• T |= φ means boolean expression φ is true under T ; in
other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of
them, T |= φ1 if and only if T |= φ2.

– Equivalently, for any truth assignment T appropriate
to both of them, T |= (φ1 ⇔ φ2).
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Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows, one for each possible
truth assignment of the n variables together with the
truth value of φ under that truth assignment.

• A truth table can be used to prove if two boolean
expressions are equivalent.

– Check if they give identical truth values under all 2n

truth assignments.
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A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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De Morgan’sa Laws

• De Morgan’s laws say that

¬(φ1 ∧ φ2) = ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) = ¬φ1 ∧ ¬φ2.

• Here is a proof for the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871).
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Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal
form (CNF) if

φ =
n∧

i=1

Ci,

where each clause Ci is the disjunction of zero or more
literals.a

– For example, (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF
containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form
(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of one or
more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).
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Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj: This is trivially true.

φ = ¬φ1 and a CNF is sought: Turn φ1 into a DNF and
apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought: Turn φ1 into a CNF and
apply de Morgan’s laws to make a DNF for φ.

φ = φ1 ∨ φ2 and a DNF is sought: Make φ1 and φ2

DNFs.

φ = φ1 ∨ φ2 and a CNF is sought: Let φ1 =
∧n1

i=1 Ai and
φ2 =

∧n2
i=j Bj be CNFs. Set

φ =
n1∧

i=1

n2∧

j=1

(Ai ∨Bj).
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Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought: Make φ1 and φ2

CNFs.

φ = φ1 ∧ φ2 and a DNF is sought: Let φ1 =
∨n1

i=1 Ai and
φ2 =

∨n2
j=1 Bj be DNFs. Set

φ =
n1∨

i=1

n2∨

j=1

(Ai ∧Bj).
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An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))
¬(CNF∨CNF)

= ¬(((a) ∧ (y)) ∨ (z ∨ w))
¬(CNF)

= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))
de Morgan

= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).
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Satisfiability

• A boolean expression φ is satisfiable if there is a truth
assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all
T appropriate to φ.

• φ is unsatisfiable if and only if φ is false under all
appropriate truth assignments if and only if ¬φ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.”
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Ludwig Wittgenstein (1889–1951)
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satisfiability (sat)

• The length of a boolean expression is the length of the
string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table
method.

• Solvable in polynomial time on an NTM, hence in NP
(p. 87).

• A most important problem in answering the P = NP
problem (p. 261).
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unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression
φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the
truth table method.
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Relations among sat, unsat, and validity

9DOLG 8QVDWLVILDEOH

• The negation of an unsatisfiable expression is a valid
expression.

• None of the three problems—satisfiability,
unsatisfiability, validity—are known to be in P.
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Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22n

such boolean functions.

– Each of the 2n truth assignments can make f true or
false.
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Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true under T (y1 ∧ · · · ∧ yn).
∗ y1 ∧ · · · ∧ yn is the minterm over {x1, . . . , xn} for

T .

– The lengtha is ≤ n2n ≤ 22n.
aWe count the logical connectives here.
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Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).
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Boolean Functions (concluded)

Corollary 14 Every n-ary boolean function can be
expressed by a size-n2n boolean expression.

In general, the exponential length in n cannot be avoided
(p. 169).
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Boolean Circuits

• A boolean circuit is a graph C whose nodes are the
gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)
equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.
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Boolean Circuits (concluded)

• Gates of sort from {true, false, x1, x2, . . .} are the
inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by
infinitely many boolean circuits.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164



Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬�[L
¬

[L

[L ∨�[M
∨

[L [M

[L ∧�[M
∧

[L [M
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An Example

((x
1
 x
2
) (x

3
x
4
)) (x

3
x
4
))

x
1

x
2
x
3

x
4

• Circuits are more economical because of the possibility
of sharing.
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circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment
such that the circuit outputs true?

circuit value: The same as circuit sat except that the
circuit has no variable gates.

• circuit sat ∈ NP: Guess a truth assignment and then
evaluate the circuit.

• circuit value ∈ P: Evaluate the circuit from the input
gates gradually towards the output gate.
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