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Density?

The density of language L C X* is defined as

densy(n) ={z € L:|x| < n}|.

o If L = {0,1}*, then densy(n) = 2" — 1.

e So the density function grows at most exponentially.

e For a unary language L C {0},

densy (n) <n + 1.

A~
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).
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Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.
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Self-Reducibility for SAT

An algorithm exploits self-reducibility if it reduces the

problem to the same problem with a smaller size.

Let ¢ be a boolean expression in n variables

L1y L2y ysp.

t € {0,1}7 is a partial truth assignment for

L1y, L2y, Ly

¢|t] denotes the expression after substituting the truth

values of ¢ for x1,22,...,2¢ In Q.
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An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |t| = n then
return ¢|t];

return ¢[t0]|V ¢[t1];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).
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NP-Completeness and Density?

Theorem 78 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

e We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ¢

with n variables if it is satisfiable.

e Specifically, we use R to prune the exponential-time

exhaustive search on p. 611.

e The trick is to keep the already discovered results ¢|t]
in a table H.

2Berman (1978).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612



if || =n then
return ¢|t|;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]),1) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢[t]),0) into H;
return “unsatisfiable”;
end if
end if
. end if

e
Ny 22
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The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t’]) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in

log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.
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The Proof (continued)

e A search of the table takes time O(p(n)) in the random

access memory model.

e The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of

depth at most n.
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The Proof (continued)

e There is a set T = {t1,to,...} of invocations (partial

truth assignments, i.e.) such that:
= [T = (M =1)/(2n).
— All invocations in T are recursive (nonleaves).

— None of the elements of 71" is a prefix of another.
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3rd step: Delete all #'s

at most » ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto T

\ Ist step: Delete
leaves; (M —1)/2

nonleaves remaining
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The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of s,t € T is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of 1" implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.
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The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence (M —1)/(2n) < p(n).

Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).
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coNP-Completeness and Density

Theorem 79 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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Oracles®

We will be considering TMs with access to a

“subroutine” or black box.

This black box solves a language problem L (such as

SAT) in one step.

By presenting an input x to the black box, in one step
the black box returns “yes” or “no” depending on
whether x € L.

e This black box is called aptly an oracle.

2Turing (1936).
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Oracle Turing Machines

e A Turing machine M’ with oracle is a multistring
deterministic TM.

e It has a special string called the query string.

e It also has three special states:
— ¢q? (the query state).

— Qyes and qno (the answer states).
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Oracle Turing Machines (concluded)

Let A C X* be a language.

From ¢?, M’ moves to either Qyes O @no depending on

whether the current query string is in A or not.

— This piece of information can be used by M”.

— Think of A as a black box or a vendor-supplied
subroutine.

M is otherwise like an ordinary TM.

M4 (z) denotes the computation of M’ with oracle A on

input x.
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Complexity Measures of Oracle TMs

The time complexity for oracle TMs is like that for
ordinary TMs.

Nondeterministic oracle TMs are defined in the same

way.

Let C be a deterministic or nondeterministic time

complexity class.

Define C# to be the class of all languages decided (or

accepted) by machines in C with access to oracle A.
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An Example

e SAT COMPLEMENT € P,

— Reverse the answer of SAT oracle A as our answer.
. if ¢ € A then
return “no”; {¢ is satisfiable.}

return “yes”; {¢ is not satisfiable.}
: end if

1
2
3: else
4
5

e As SAT COMPLEMENT is coNP-complete (p. 344),

coNP C P,
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The Turing Reduction

e Recall L, is reducible to Lo if there is a logspace
function R such that x € L1 < R(z) € Lo (p. 195).

— It is called logspace reduction, Karp reduction
(p. 197), or many-one reduction.
e But the reduction in proving L € C* is more general.
— An algorithm B for C with access to A exists.

— B can call A many times within the resource bound.

— We say L is Turing-reducible to A.
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Two Types of Reductions

Lemma 80 If Ly is (logspace-) reducible to Lo, then Ly is
Turing-reducible to L.

e Logspace reduction is more restrictive than Turing

reduction.
e It is Turing reduction with only one query to L.
e Note also that a language in L also belongs in P.

Corollary 81 If L is complete under logspace-reductions,

then L is complete under Turing reductions.
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Two Types of Reductions (continued)

e Turing reduction is more general than (p. 627)—and

equally valid as—logspace reduction.

A? —— yedno

"R(X)

R — yesno

e This is true even if B runs in logarithmic space and

oracle A is queried only once.
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Two Types of Reductions (continued)

e Turing reduction is more powerful than logspace

reduction.

e For example, there are languages A and B such that A is

Turing-reducible to B but not logspace-reducible to B.?

e However, for the class NP, no such separation has been

proved.P

2Ladner, Lynch, and Selman (1975).
PIf we assume NP does not have p-measure 0, then separation exists

(Lutz and Mayordomo (1996)).
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Two Types of Reductions (concluded)

e The Turing reduction is adaptive.
— Later queries may depend on prior queries.
e If we restrict the Turing reduction to ask all queries

before receiving any answers, the reduction is called the

truth-table reduction.

e Separation results exist for the Turing and truth-table

reductions given some conjectures.®

2Hitchcock and Pavan (2006).
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The Power of Turing Reduction

e SAT COMPLEMENT is not likely to be reducible to SAT.
— Otherwise, CONP = NP as SAT COMPLEMENT is
coNP-complete (p. 344).
e But SAT COMPLEMENT is polynomial-time
Turing-reducible to SAT.
— SAT COMPLEMENT € P**' (p. 625).
— True even though the oracle SAT is called only once!

— The algorithm on p. 625 is not a logspace reduction.
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Computation That Counts
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Counting Problems

e Counting problems are concerned with the number of

solutions.

— #SAT: the number of satisfying truth assignments to

a boolean formula.
— ##HAMILTONIAN PATH: the number of Hamiltonian
paths in a graph.
e They cannot be easier than their decision versions.
— The decision problem has a solution if and only if the

solution count is larger than O.

e But they can be harder than their decision versions.
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Decision and Counting Problems

e F'P is the set of polynomial-time computable functions
f:{0,1}* — Z.
— GCD, LCM, matrix-matrix multiplication, etc.

o If #sAT € FP, then P = NP.

— Given boolean formula ¢, calculate its number of

satisfying truth assignments, k, in polynomial time.

— Declare “¢ € saT” if and only if k£ > 1.

e The validity of the reverse direction is open.
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A Counting Problem Harder than Its Decision Version

e Some counting problems are harder than their decision

versions.
CYCLE asks if a directed graph contains a cycle.

#CYCLE counts the number of cycles in a directed
graph.

CYCLE is in P by a simple greedy algorithm.

But #CYCLE is hard unless P = NP.
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Counting Class #P
A function f is in #P (or f € #P) if
e There exists a polynomial-time NTM M.

e M (x) has f(x) accepting paths for all inputs z.

e f(x) = number of accepting paths of M (x).
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Some #P Problems

e f(¢) = number of satisfying truth assignments to ¢.

— The desired NTM guesses a truth assignment 7" and
accepts ¢ if and only if T' = ¢.

— Hence [ € #P.

— f is also called #SAT.
e #HAMILTONIAN PATH.

e #3-COLORING.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637



#P Completeness

e Function f is #P-complete if

— f € #P.
— #P C FP/.
x Every function in #P can be computed in

polynomial time with access to a black box or

oracle for f.

— Of course, oracle f will be accessed only a
polynomial number of times.

— #P is said to be polynomial-time
Turing-reducible to f.
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##SAT |s #P-Complete

First, it is in #P (p. 637).

Let f € #P compute the number of accepting paths of
M.

Cook’s theorem uses a parsimonious reduction from M
on input x to an instance ¢ of SAT (p. 247).
— Hence the number of accepting paths of M (x) equals

the number of satisfying truth assignments to ¢.

Call the oracle #SAT with ¢ to obtain the desired

answer regarding f(x).
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CYCLE COVER

e A set of node-disjoint cycles that cover all nodes in a

directed graph is called a cycle cover.

e There are 3 cycle covers (in red) above.
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CYCLE COVER and BIPARTITE PERFECT MATCHING

Proposition 82 CYCLE COVER and BIPARTITE PERFECT
MATCHING (p. 390) are parsimoniously reducible to each

other.

e A polynomial-time algorithm creates a bipartite graph

G’ from any directed graph G.

e Moreover, the number cycle covers for G equals the

number of bipartite perfect matchings for G’.
e And vice versa.

Corollary 83 CYCLE COVER € P.
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lllustration of the Proof
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Permanent

The permanent of an n X n integer matrix A is

perm(A) = ) [ 4ixq.

T =1
— 7 ranges over all permutations of n elements.
0/1 PERMANENT computes the permanent of a 0/1
(binary) matrix.

— The permanent of a binary matrix is at most n!.

Simpler than determinant (5) on p. 392: no signs.

But, surprisingly, much harder to compute than

determinant!
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Permanent and Counting Perfect Matchings

e BIPARTITE PERFECT MATCHING is related to
determinant (p. 393).

e FH#BIPARTITE PERFECT MATCHING is related to

permanent.

Proposition 84 0/1 PERMANENT and BIPARTITE PERFECT

MATCHING are parsimoniously reducible to each other.
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The Proof

e Given a bipartite graph G, construct an n x n binary

matrix A.

— The (4, 7)th entry A;; is 1if (¢,5) € £ and 0

otherwise.

e Then perm(A) = number of perfect matchings in G.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645



lllustration of the Proof Based on p. 642 (Left)

e perm(A) = 4.

e The permutation corresponding to the perfect matching

on p. 642 is marked.
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Permanent and Counting Cycle Covers

Proposition 85 0/1 PERMANENT and CYCLE COVER are

parsimoniously reducible to each other.

e Let A be the adjacency matrix of the graph on p. 642
(right).

e Then perm(A) = number of cycle covers.
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Three Parsimoniously Equivalent Problems

From Propositions 82 (p. 641) and 84 (p. 644), we

summarize:

Lemma 86 0/1 PERMANENT, BIPARTITE PERFECT
MATCHING, and CYCLE COVER are parsimoniously
equivalent.

We will show that the counting versions of all three

problems are in fact #P-complete.
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WEIGHTED CYCLE COVER

Consider a directed graph G with integer weights on the
edges.

The weight of a cycle cover is the product of its edge
weights.

The cycle count of GG is sum of the weights of all cycle

covers.

— Let A be G’s adjacency matrix but A;; = w; if the
edge (¢, 7) has weight w;,.

— Then perm(A) = G’s cycle count (same proof as

Proposition 85 on p. 647).

#CYCLE COVER is a special case: All weights are 1.
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An Example®

There are 3 cycle covers, and the cycle count is

(4-1-1)-(1)+(1-1)-(2-3)+(4-2-1-1) = 18.

@Each edge has weight 1 unless stated otherwise.
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Three #P-Complete Counting Problems

Theorem 87 (Valiant (1979)) 0/1 PERMANENT,
#BIPARTITE PERFECT MATCHING, and #CYCLE COVER are
#P-complete.

e By Lemma 86 (p. 648), it suffices to prove that #CYCLE
COVER is #P-complete.

e #SAT is #P-complete (p. 639).

e #J3SAT is #P-complete because it and #SAT are

parsimoniously equivalent (p. 256).

e We shall prove that #3SAT is polynomial-time
Turing-reducible to #CYCLE COVER.
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The Proof (continued)

Let ¢ be the given 3SAT formula.

— It contains n variables and m clauses (hence 3m

literals).

— It has #¢ satisfying truth assignments.

First we construct a weighted directed graph H with

cycle count

HH = 45™ x H#o.

Then we construct an unweighted directed graph G.

We make sure #H (hence #¢) is polynomial-time

Turing-reducible to G’s number of cycle covers (denoted

el
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The Proof: the Clause Gadget (continued)

e Each clause is associated with a clause gadget.

e Lach edge has weight 1 unless stated otherwise.
e Fach bold edge corresponds to one literal in the clause.

e There are not parallel lines as bold edges are schematic

only (preview p. 666).
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The Proof: the Clause Gadget (continued)

e Following a bold edge means making the literal false (0).

e A cycle cover cannot select all 3 bold edges.

— The interior node would be missing.

e Every proper nonempty subset of bold edges corresponds

to a unique cycle cover of weight 1 (see next page).
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The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:
Ja=0,b=0,c=1,(2) a=0,b=1,c=0, etc.

QQJ@OQ .

(1) (2) 3) () )
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The Proof: the XOR Gadget (continued)

-1

<‘ .
! | .

2
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The Proof: Properties of the XOR Gadget (continued)

e The XOR gadget schema:

e At most one of the 2 schematic edges will be included in

a cycle cover.

e There will be 3m XOR gadgets, one for each literal.
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The Proof: Properties of the XOR Gadget (continued)
Total weight of —1 —2 4+ 6 — 3 = 0 for cycle covers not

entering or leaving it.

/R

A
M
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The Proof: Properties of the XOR Gadget (continued)
e Total weight of -1 +1—-64+2+4+3+ 1 =0 for cycle

covers entering at u and leaving at v’.2

o ) o]
R R
> < 2US > 4

v’ Q v v’ % v O
e Same for cycle covers entering at v and leaving at u’.

2Corrected by Mr. Yu-Tshung Dai (B91201046) and Mr. Che-Wei
Chang (R95922093) on December 27, 2006.
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The Proof: Properties of the XOR Gadget (continued)

e Total weight of 1 +2+2 —-141—1 =4 for cycle covers

entering at v and leaving at u’.

07 SR
w’ \j/»/
\Va O \Y \a B Vv

e Same for cycle covers entering at v and leaving at v'.
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The Proof: Summary (continued)

e Cycle covers not entering all of the XOR gadgets
contribute 0 to the cycle count.

— Let x denote an XOR gadget not entered for a cycle

cover C.

— Now, the said cycle covers’ total contribution is

Z weight(c)

cycle cover c for H

Z weight(c) Z weight(x)

cycle cover ¢ for H — x cycle cover c for x

Z weight(c) - 0

cycle cover ¢ for H — x

0.
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The Proof: Summary (continued)

e Cycle covers entering any of the XOR gadgets and

leaving illegally contribute 0 to the cycle count.

e For every XOR gadget entered and exited legally, the
total weight of a cycle cover is multiplied by 4.

— With an XOR gadget x entered and exited legally
fixed,

contributions of such cycle covers to the cycle count

Z weight(c)

cycle cover ¢ for H

Z weight(c) Z weight(x)

cycle cover ¢ for H — «x cycle cover c for x

Z weight(c) - 4.

cycle cover c for H — x
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The Proof: Summary (continued)

e Hereafter we consider only cycle covers which enter

every XOR gadget and leaves it legally.

— Only these cycle covers contribute nonzero weights to

the cycle count.

e They are said to respect the XOR gadgets.
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The Proof: the Choice Gadget (continued)

e One choice gadget (a schema) for each variable.

e It gives the truth assignment for the variable.

e Use it with the XOR gadget to enforce consistency.
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Schema for (wVaxVy)A(ZVYyV2)
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The Proof: a Key Observation (continued)

Each satisfying truth assignment to ¢ corresponds to a

schematic cycle cover that respects the XOR gadgets.
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w=1,z=0,y=0,2z=1< One Cycle Cover
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The Proof: a Key Corollary (continued)

e Recall that there are 3m XOR gadgets.

e Each satisfying truth assignment to ¢ contributes 4°™ to
the cycle count #H.

e Hence
#H = 4°™ x #¢,

as desired.
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