On P vs NP

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 607

Density?

The density of language L C X* is defined as

densy(n) ={z € L:|x| < n}|.

o If L = {0,1}*, then densy(n) = 2" — 1.

e So the density function grows at most exponentially.

e For a unary language L C {0},

densy (n) <n + 1.

A~
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 608

Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 609

Self-Reducibility for SAT

An algorithm exploits self-reducibility if it reduces the

problem to the same problem with a smaller size.

Let ¢ be a boolean expression in n variables

L1y L2y ysp.

t € {0,1}7 is a partial truth assignment for

L1y, L2y, Ly

¢|t] denotes the expression after substituting the truth

values of ¢ for x1,22,...,2¢ In Q.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |t| = n then
return ¢|t];

return ¢[t0]|V ¢[t1];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 611

NP-Completeness and Density?

Theorem 78 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

e We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ¢

with n variables if it is satisfiable.

e Specifically, we use R to prune the exponential-time

exhaustive search on p. 611.

e The trick is to keep the already discovered results ¢|t]
in a table H.

2Berman (1978).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612

if || =n then
return ¢|t|;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]),1) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢[t]),0) into H;
return “unsatisfiable”;
end if
end if
. end if

e
Ny 22

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 613

The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t’]) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in

log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 614

The Proof (continued)

e A search of the table takes time O(p(n)) in the random

access memory model.

e The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of

depth at most n.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 615

The Proof (continued)

e There is a set T = {t1,to,...} of invocations (partial

truth assignments, i.e.) such that:
= [T = (M =1)/(2n).
— All invocations in T are recursive (nonleaves).

— None of the elements of 71" is a prefix of another.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 616

3rd step: Delete all #'s

at most » ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto T

\ Ist step: Delete
leaves; (M —1)/2

nonleaves remaining

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 617

The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of s,t € T is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of 1" implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 618

The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence (M —1)/(2n) < p(n).

Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 619

coNP-Completeness and Density

Theorem 79 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 620

Oracles®

We will be considering TMs with access to a

“subroutine” or black box.

This black box solves a language problem L (such as

SAT) in one step.

By presenting an input x to the black box, in one step
the black box returns “yes” or “no” depending on
whether x € L.

e This black box is called aptly an oracle.

2Turing (1936).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 621

Oracle Turing Machines

e A Turing machine M’ with oracle is a multistring
deterministic TM.

e It has a special string called the query string.

e It also has three special states:
— ¢q? (the query state).

— Qyes and qno (the answer states).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 622

Oracle Turing Machines (concluded)

Let A C X* be a language.

From ¢?, M’ moves to either Qyes O @no depending on

whether the current query string is in A or not.

— This piece of information can be used by M”.

— Think of A as a black box or a vendor-supplied
subroutine.

M is otherwise like an ordinary TM.

M4 (z) denotes the computation of M’ with oracle A on

input x.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 623

Complexity Measures of Oracle TMs

The time complexity for oracle TMs is like that for
ordinary TMs.

Nondeterministic oracle TMs are defined in the same

way.

Let C be a deterministic or nondeterministic time

complexity class.

Define C# to be the class of all languages decided (or

accepted) by machines in C with access to oracle A.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 624

An Example

e SAT COMPLEMENT € P,

— Reverse the answer of SAT oracle A as our answer.
. if ¢ € A then
return “no”; {¢ is satisfiable.}

return “yes”; {¢ is not satisfiable.}
: end if

1
2
3: else
4
5

e As SAT COMPLEMENT is coNP-complete (p. 344),

coNP C P,

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625

The Turing Reduction

e Recall L, is reducible to Lo if there is a logspace
function R such that x € L1 < R(z) € Lo (p. 195).

— It is called logspace reduction, Karp reduction
(p. 197), or many-one reduction.
e But the reduction in proving L € C* is more general.
— An algorithm B for C with access to A exists.

— B can call A many times within the resource bound.

— We say L is Turing-reducible to A.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 626

Two Types of Reductions

Lemma 80 If Ly is (logspace-) reducible to Lo, then Ly is
Turing-reducible to L.

e Logspace reduction is more restrictive than Turing

reduction.
e It is Turing reduction with only one query to L.
e Note also that a language in L also belongs in P.

Corollary 81 If L is complete under logspace-reductions,

then L is complete under Turing reductions.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 627

Two Types of Reductions (continued)

e Turing reduction is more general than (p. 627)—and

equally valid as—logspace reduction.

A? —— yedno

"R(X)

R — yesno

e This is true even if B runs in logarithmic space and

oracle A is queried only once.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 628

Two Types of Reductions (continued)

e Turing reduction is more powerful than logspace

reduction.

e For example, there are languages A and B such that A is

Turing-reducible to B but not logspace-reducible to B.?

e However, for the class NP, no such separation has been

proved.P

2Ladner, Lynch, and Selman (1975).
PIf we assume NP does not have p-measure 0, then separation exists

(Lutz and Mayordomo (1996)).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 629

Two Types of Reductions (concluded)

e The Turing reduction is adaptive.
— Later queries may depend on prior queries.
e If we restrict the Turing reduction to ask all queries

before receiving any answers, the reduction is called the

truth-table reduction.

e Separation results exist for the Turing and truth-table

reductions given some conjectures.®

2Hitchcock and Pavan (2006).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 630

The Power of Turing Reduction

e SAT COMPLEMENT is not likely to be reducible to SAT.
— Otherwise, CONP = NP as SAT COMPLEMENT is
coNP-complete (p. 344).
e But SAT COMPLEMENT is polynomial-time
Turing-reducible to SAT.
— SAT COMPLEMENT € P**' (p. 625).
— True even though the oracle SAT is called only once!

— The algorithm on p. 625 is not a logspace reduction.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631

Computation That Counts

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632

Counting Problems

e Counting problems are concerned with the number of

solutions.

— #SAT: the number of satisfying truth assignments to

a boolean formula.
— ##HAMILTONIAN PATH: the number of Hamiltonian
paths in a graph.
e They cannot be easier than their decision versions.
— The decision problem has a solution if and only if the

solution count is larger than O.

e But they can be harder than their decision versions.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633

Decision and Counting Problems

e F'P is the set of polynomial-time computable functions
f:{0,1}* — Z.
— GCD, LCM, matrix-matrix multiplication, etc.

o If #sAT € FP, then P = NP.

— Given boolean formula ¢, calculate its number of

satisfying truth assignments, k, in polynomial time.

— Declare “¢ € saT” if and only if k£ > 1.

e The validity of the reverse direction is open.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634

A Counting Problem Harder than Its Decision Version

e Some counting problems are harder than their decision

versions.
CYCLE asks if a directed graph contains a cycle.

#CYCLE counts the number of cycles in a directed
graph.

CYCLE is in P by a simple greedy algorithm.

But #CYCLE is hard unless P = NP.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635

Counting Class #P
A function f is in #P (or f € #P) if
e There exists a polynomial-time NTM M.

e M (x) has f(x) accepting paths for all inputs z.

e f(x) = number of accepting paths of M (x).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 636

Some #P Problems

e f(¢) = number of satisfying truth assignments to ¢.

— The desired NTM guesses a truth assignment 7" and
accepts ¢ if and only if T' = ¢.

— Hence [€ #P.

— f is also called #SAT.
e #HAMILTONIAN PATH.

e #3-COLORING.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637

#P Completeness

e Function f is #P-complete if

— f € #P.
— #P C FP/.
x Every function in #P can be computed in

polynomial time with access to a black box or

oracle for f.

— Of course, oracle f will be accessed only a
polynomial number of times.

— #P is said to be polynomial-time
Turing-reducible to f.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638

##SAT |s #P-Complete

First, it is in #P (p. 637).

Let f € #P compute the number of accepting paths of
M.

Cook’s theorem uses a parsimonious reduction from M
on input x to an instance ¢ of SAT (p. 247).
— Hence the number of accepting paths of M (x) equals

the number of satisfying truth assignments to ¢.

Call the oracle #SAT with ¢ to obtain the desired

answer regarding f(x).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639

CYCLE COVER

e A set of node-disjoint cycles that cover all nodes in a

directed graph is called a cycle cover.

e There are 3 cycle covers (in red) above.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640

CYCLE COVER and BIPARTITE PERFECT MATCHING

Proposition 82 CYCLE COVER and BIPARTITE PERFECT
MATCHING (p. 390) are parsimoniously reducible to each

other.

e A polynomial-time algorithm creates a bipartite graph

G’ from any directed graph G.

e Moreover, the number cycle covers for G equals the

number of bipartite perfect matchings for G’.
e And vice versa.

Corollary 83 CYCLE COVER € P.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 641

lllustration of the Proof

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642

Permanent

The permanent of an n X n integer matrix A is

perm(A) =) [4ixq.

T =1
— 7 ranges over all permutations of n elements.
0/1 PERMANENT computes the permanent of a 0/1
(binary) matrix.

— The permanent of a binary matrix is at most n!.

Simpler than determinant (5) on p. 392: no signs.

But, surprisingly, much harder to compute than

determinant!

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 643

Permanent and Counting Perfect Matchings

e BIPARTITE PERFECT MATCHING is related to
determinant (p. 393).

e FH#BIPARTITE PERFECT MATCHING is related to

permanent.

Proposition 84 0/1 PERMANENT and BIPARTITE PERFECT

MATCHING are parsimoniously reducible to each other.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 644

The Proof

e Given a bipartite graph G, construct an n x n binary

matrix A.

— The (4, 7)th entry A;; is 1if (¢,5) € £ and 0

otherwise.

e Then perm(A) = number of perfect matchings in G.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645

lllustration of the Proof Based on p. 642 (Left)

e perm(A) = 4.

e The permutation corresponding to the perfect matching

on p. 642 is marked.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646

Permanent and Counting Cycle Covers

Proposition 85 0/1 PERMANENT and CYCLE COVER are

parsimoniously reducible to each other.

e Let A be the adjacency matrix of the graph on p. 642
(right).

e Then perm(A) = number of cycle covers.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647

Three Parsimoniously Equivalent Problems

From Propositions 82 (p. 641) and 84 (p. 644), we

summarize:

Lemma 86 0/1 PERMANENT, BIPARTITE PERFECT
MATCHING, and CYCLE COVER are parsimoniously
equivalent.

We will show that the counting versions of all three

problems are in fact #P-complete.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648

WEIGHTED CYCLE COVER

Consider a directed graph G with integer weights on the
edges.

The weight of a cycle cover is the product of its edge
weights.

The cycle count of GG is sum of the weights of all cycle

covers.

— Let A be G’s adjacency matrix but A;; = w; if the
edge (¢, 7) has weight w;,.

— Then perm(A) = G’s cycle count (same proof as

Proposition 85 on p. 647).

#CYCLE COVER is a special case: All weights are 1.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649

An Example®

There are 3 cycle covers, and the cycle count is

(4-1-1)-(1)+(1-1)-(2-3)+(4-2-1-1) = 18.

@Each edge has weight 1 unless stated otherwise.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650

Three #P-Complete Counting Problems

Theorem 87 (Valiant (1979)) 0/1 PERMANENT,
#BIPARTITE PERFECT MATCHING, and #CYCLE COVER are
#P-complete.

e By Lemma 86 (p. 648), it suffices to prove that #CYCLE
COVER is #P-complete.

e #SAT is #P-complete (p. 639).

e #J3SAT is #P-complete because it and #SAT are

parsimoniously equivalent (p. 256).

e We shall prove that #3SAT is polynomial-time
Turing-reducible to #CYCLE COVER.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651

The Proof (continued)

Let ¢ be the given 3SAT formula.

— It contains n variables and m clauses (hence 3m

literals).

— It has #¢ satisfying truth assignments.

First we construct a weighted directed graph H with

cycle count

HH = 45™ x H#o.

Then we construct an unweighted directed graph G.

We make sure #H (hence #¢) is polynomial-time

Turing-reducible to G’s number of cycle covers (denoted

el

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652

The Proof: the Clause Gadget (continued)

e Each clause is associated with a clause gadget.

e Lach edge has weight 1 unless stated otherwise.
e Fach bold edge corresponds to one literal in the clause.

e There are not parallel lines as bold edges are schematic

only (preview p. 666).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653

The Proof: the Clause Gadget (continued)

e Following a bold edge means making the literal false (0).

e A cycle cover cannot select all 3 bold edges.

— The interior node would be missing.

e Every proper nonempty subset of bold edges corresponds

to a unique cycle cover of weight 1 (see next page).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:
Ja=0,b=0,c=1,(2) a=0,b=1,c=0, etc.

QQJ@OQ .

(1) (2) 3) ())

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655

The Proof: the XOR Gadget (continued)

-1

<‘ .
! | .

2

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656

The Proof: Properties of the XOR Gadget (continued)

e The XOR gadget schema:

e At most one of the 2 schematic edges will be included in

a cycle cover.

e There will be 3m XOR gadgets, one for each literal.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657

The Proof: Properties of the XOR Gadget (continued)
Total weight of —1 —2 4+ 6 — 3 = 0 for cycle covers not

entering or leaving it.

/R

A
M

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658

The Proof: Properties of the XOR Gadget (continued)
e Total weight of -1 +1—-64+2+4+3+ 1 =0 for cycle

covers entering at u and leaving at v’.2

o) o]
R R
> < 2US > 4

v’ Q v v’ % v O
e Same for cycle covers entering at v and leaving at u’.

2Corrected by Mr. Yu-Tshung Dai (B91201046) and Mr. Che-Wei
Chang (R95922093) on December 27, 2006.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659

The Proof: Properties of the XOR Gadget (continued)

e Total weight of 1 +2+2 —-141—1 =4 for cycle covers

entering at v and leaving at u’.

07 SR
w’ \j/»/
\Va O \Y \a B Vv

e Same for cycle covers entering at v and leaving at v'.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660

The Proof: Summary (continued)

e Cycle covers not entering all of the XOR gadgets
contribute 0 to the cycle count.

— Let x denote an XOR gadget not entered for a cycle

cover C.

— Now, the said cycle covers’ total contribution is

Z weight(c)

cycle cover c for H

Z weight(c) Z weight(x)

cycle cover ¢ for H — x cycle cover c for x

Z weight(c) - 0

cycle cover ¢ for H — x

0.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661

The Proof: Summary (continued)

e Cycle covers entering any of the XOR gadgets and

leaving illegally contribute 0 to the cycle count.

e For every XOR gadget entered and exited legally, the
total weight of a cycle cover is multiplied by 4.

— With an XOR gadget x entered and exited legally
fixed,

contributions of such cycle covers to the cycle count

Z weight(c)

cycle cover ¢ for H

Z weight(c) Z weight(x)

cycle cover ¢ for H — «x cycle cover c for x

Z weight(c) - 4.

cycle cover c for H — x

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 662

The Proof: Summary (continued)

e Hereafter we consider only cycle covers which enter

every XOR gadget and leaves it legally.

— Only these cycle covers contribute nonzero weights to

the cycle count.

e They are said to respect the XOR gadgets.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663

The Proof: the Choice Gadget (continued)

e One choice gadget (a schema) for each variable.

e It gives the truth assignment for the variable.

e Use it with the XOR gadget to enforce consistency.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 664

Schema for (wVaxVy)A(ZVYyV2)

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 665

o
>
SN
>
IS
<
=
>
S
>
S
=
o
©
@)
=
LL

Page 666

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof: a Key Observation (continued)

Each satisfying truth assignment to ¢ corresponds to a

schematic cycle cover that respects the XOR gadgets.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 667

w=1,z=0,y=0,2z=1< One Cycle Cover

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 668

The Proof: a Key Corollary (continued)

e Recall that there are 3m XOR gadgets.

e Each satisfying truth assignment to ¢ contributes 4°™ to
the cycle count #H.

e Hence
#H = 4°™ x #¢,

as desired.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 669

