
Computation That Counts

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 620



Counting Problems

• Counting problems are concerned with the number of

solutions.

– #sat: the number of satisfying truth assignments to

a boolean formula.

– #hamiltonian path: the number of Hamiltonian

paths in a graph.

• They cannot be easier than their decision versions.

– The decision problem has a solution if and only if the

solution count is larger than 0.

• But they can be harder than their decision versions.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 621



Decision and Counting Problems

• FP is the set of polynomial-time computable functions

f : {0, 1}∗ → Z.

– GCD, LCM, matrix-matrix multiplication, etc.

• If #sat ∈ FP, then P = NP.

– Given boolean formula φ, calculate its number of

satisfying truth assignments, k, in polynomial time.

– Declare “φ ∈ sat” if and only if k ≥ 1.

• The validity of the reverse direction is open.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 622



A Counting Problem Harder than Its Decision Version

• Some counting problems are harder than their decision

versions.

• cycle asks if a directed graph contains a cycle.

• #cycle counts the number of cycles in a directed

graph.

• cycle is in P by a simple greedy algorithm.

• But #cycle is hard unless P = NP.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 623



Counting Class #P

A function f is in #P (or f ∈ #P) if

• There exists a polynomial-time NTM M .

• M(x) has f(x) accepting paths for all inputs x.

• f(x) = number of accepting paths of M(x).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 624



Some #P Problems

• f(φ) = number of satisfying truth assignments to φ.

– The desired NTM guesses a truth assignment T and

accepts φ if and only if T |= φ.

– Hence f ∈ #P.

– f is also called #sat.

• #hamiltonian path.

• #3-coloring.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625



#P Completeness

• Function f is #P-complete if

– f ∈ #P.

– #P ⊆ FPf .

∗ Every function in #P can be computed in

polynomial time with access to a black box or

oracle for f .

– Of course, oracle f will be accessed only a

polynomial number of times.

– #P is said to be polynomial-time

Turing-reducible to f .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 626



#sat Is #P-Complete

• First, it is in #P (p. 625).

• Let f ∈ #P compute the number of accepting paths of

M .

• Cook’s theorem uses a parsimonious reduction from M

on input x to an instance φ of sat (p. 247).

– Hence the number of accepting paths of M(x) equals

the number of satisfying truth assignments to φ.

• Call the oracle #sat with φ to obtain the desired

answer regarding f(x).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 627



cycle cover

• A set of node-disjoint cycles that cover all nodes in a

directed graph is called a cycle cover.

• There are 3 cycle covers (in red) above.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 628



cycle cover and bipartite perfect matching

Proposition 79 cycle cover and bipartite perfect

matching (p. 390) are parsimoniously reducible to each

other.

• A polynomial-time algorithm creates a bipartite graph

G′ from any directed graph G.

• Moreover, the number cycle covers for G equals the

number of bipartite perfect matchings for G′.

• And vice versa.

Corollary 80 cycle cover ∈ P .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 629



Illustration of the Proof

u
1


u
2


u
3


u
4


u
5


v
1


v
2


v
3


v
4


v
5


w
1


w
4
w
3


w
2
 w
5


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 630



Permanent

• The permanent of an n × n integer matrix A is

perm(A) =
∑

π

n∏

i=1

Ai,π(i).

– π ranges over all permutations of n elements.

• 0/1 permanent computes the permanent of a 0/1

(binary) matrix.

– The permanent of a binary matrix is at most n!.

• Simpler than determinant (5) on p. 392: no signs.

• But, surprisingly, much harder to compute than

determinant!

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631



Permanent and Counting Perfect Matchings

• bipartite perfect matching is related to

determinant (p. 393).

• #bipartite perfect matching is related to

permanent.

Proposition 81 0/1 permanent and bipartite perfect

matching are parsimoniously reducible to each other.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632



The Proof

• Given a bipartite graph G, construct an n × n binary

matrix A.

– The (i, j)th entry Aij is 1 if (i, j) ∈ E and 0

otherwise.

• Then perm(A) = number of perfect matchings in G.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633



Illustration of the Proof Based on p. 630 (Left)

A =













0 0 1 1 0

0 1 0 0 0

1 0 0 0 1

1 0 1 1 0

1 0 0 0 1













.

• perm(A) = 4.

• The permutation corresponding to the perfect matching

on p. 630 is marked.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634



Permanent and Counting Cycle Covers

Proposition 82 0/1 permanent and cycle cover are

parsimoniously reducible to each other.

• Let A be the adjacency matrix of the graph on p. 630

(right).

• Then perm(A) = number of cycle covers.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635



Three Parsimoniously Equivalent Problems

From Propositions 79 (p. 629) and 81 (p. 632), we

summarize:

Lemma 83 0/1 permanent, bipartite perfect

matching, and cycle cover are parsimoniously

equivalent.

We will show that the counting versions of all three

problems are in fact #P-complete.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 636



weighted cycle cover

• Consider a directed graph G with integer weights on the

edges.

• The weight of a cycle cover is the product of its edge

weights.

• The cycle count of G is sum of the weights of all cycle

covers.

– Let A be G’s adjacency matrix but Aij = wi if the

edge (i, j) has weight wi.

– Then perm(A) = G’s cycle count (same proof as

Proposition 82 on p. 635).

• #cycle cover is a special case: All weights are 1.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637



An Examplea

4


4


4


2


3


4


4


4


2


3


4


4


4


2


3


There are 3 cycle covers, and the cycle count is

(4 · 1 · 1) · (1) + (1 · 1) · (2 · 3) + (4 · 2 · 1 · 1) = 18.

aEach edge has weight 1 unless stated otherwise.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638



Three #P-Complete Counting Problems

Theorem 84 (Valiant (1979)) 0/1 permanent,

#bipartite perfect matching, and #cycle cover are

#P-complete.

• By Lemma 83 (p. 636), it suffices to prove that #cycle

cover is #P-complete.

• #sat is #P-complete (p. 627).

• #3sat is #P-complete because it and #sat are

parsimoniously equivalent (p. 256).

• We shall prove that #3sat is polynomial-time

Turing-reducible to #cycle cover.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639



The Proof (continued)

• Let φ be the given 3sat formula.

– It contains n variables and m clauses (hence 3m

literals).

– It has #φ satisfying truth assignments.

• First we construct a weighted directed graph H with

cycle count

#H = 43m × #φ.

• Then we construct an unweighted directed graph G.

• We make sure #H (hence #φ) is polynomial-time

Turing-reducible to G’s number of cycle covers (denoted

#G).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640



The Proof: the Clause Gadget (continued)

• Each clause is associated with a clause gadget.

a


b


c


• Each edge has weight 1 unless stated otherwise.

• Each bold edge corresponds to one literal in the clause.

• There are not parallel lines as bold edges are schematic

only (preview p. 654).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 641



The Proof: the Clause Gadget (continued)

• Following a bold edge means making the literal false (0).

• A cycle cover cannot select all 3 bold edges.

– The interior node would be missing.

• Every proper nonempty subset of bold edges corresponds

to a unique cycle cover of weight 1 (see next page).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642



The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:

(1) a = 0, b = 0, c = 1, (2) a = 0, b = 1, c = 0, etc.

(1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 643



The Proof: the XOR Gadget (continued)

-
 1


-
 1


-
 1


2


3


u


v'


u'


v


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 644



The Proof: Properties of the XOR Gadget (continued)

• The XOR gadget schema:

+


u
 u'


v'
 v


• At most one of the 2 schematic edges will be included in

a cycle cover.

• There will be 3m XOR gadgets, one for each literal.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645



The Proof: Properties of the XOR Gadget (continued)

Total weight of −1 − 2 + 6 − 3 = 0 for cycle covers not

entering or leaving it.

-
 1


u


v'


u'


v
 -
 1


2


u


v'


u'


v


-
 1


3


u


v'


u'


v


2


3


u


v'


u'


v


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646



The Proof: Properties of the XOR Gadget (continued)

• Total weight of −1 + 1 = 0 for cycle covers entering at u

and leaving at v′.

-
 1


u


v'


u'


v


u


v'


u'


v


• Same for cycle covers entering at v and leaving at u′.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647



The Proof: Properties of the XOR Gadget (continued)

• Total weight of 1 + 2 + 2 − 1 + 1 − 1 = 4 for cycle covers

entering at u and leaving at u′.

-
 1


u


v'


u'


v


u


v'


u'


v


-
 1


u


v'


u'


v


2


u


v'


u'


v


-
 1


u


v'


u'


v


-
 1
 -
 1


-
 1

2


u


v'


u'


v


• Same for cycle covers entering at v and leaving at v′.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648



The Proof: Summary (continued)

• Cycle covers not entering all of the XOR gadgets

contribute 0 to the cycle count.

– Fix an XOR gadget x not entered.

– Now,

cycle count

=
∑

cycle cover c for H

weight(c)

=
∑

cycle cover c for H − x

weight(c)
∑

cycle cover c for x

weight(x)

=
∑

cycle cover c for H − x

weight(c) · 0

= 0.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649



The Proof: Summary (continued)

• Cycle covers entering any of the XOR gadgets and

leaving illegally contribute 0 to the cycle count.

• For every XOR gadget entered and left legally, the total

weight of a cycle cover is multiplied by 4.

• Hereafter we consider only cycle covers which enter

every XOR gadget and leaves it legally.

– Only these cycle covers contribute nonzero weights to

the cycle count.

– They are said to respect the XOR gadgets.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650



The Proof: the Choice Gadget (continued)

• One choice gadget (a schema) for each variable.

x
 x


• It gives the truth assignment for the variable.

• Use it with the XOR gadget to enforce consistency.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651



Schema for (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w
 w
 y
 y
 z
 z
x
 x


w


x


y
 x


y


z


+
 +
 +
+
+
+


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652



Full Graph (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w
 w
 y
 y
 z
 z
x
 x


w


x


y
 x


y


z


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653



The Proof: a Key Observation (continued)

Each satisfying truth assignment to φ corresponds to a

schematic cycle cover that respects the XOR gadgets.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654



w = 1, x = 0, y = 0, z = 1 ⇔ One Cycle Cover

w
 w
 y
 y
 z
 z
x
 x


w


x


y
 x


y


z


+
 +
 +
+
+
+


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655



The Proof: a Key Corollary (continued)

• Recall that there are 3m XOR gadgets.

• Each satisfying truth assignment to φ contributes 43m to

the cycle count #H.

• Hence

#H = 43m × #φ,

as desired.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656



“w = 1, x = 0, y = 0, z = 1” Adds 46 to Cycle Count

w
 w
 y
 y
 z
 z
x
 x


w


x


y
 x


y


z


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657



The Proof (continued)

• We are almost done.

• The weighted directed graph H needs to be efficiently

replaced by some unweighted graph G.

• Furthermore, knowing #G should enable us to calculate

#H efficiently.

– This done, #φ will have been Turing-reducible to

#G.a

• We proceed to construct this graph G.

aBy way of #H of course.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658



The Proof: Construction of G (continued)

• Replace edges with weights 2 and 3 as follows (note that

the graph cannot have parallel edges):

-
 1


-
 1


-
 1


u


v'


u'


v


• The cycle count #H remains unchanged.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659



The Proof: Construction of G (continued)

• We move on to edges with weight −1.

• First, we count the number of nodes, M .

• Each clause gadget contains 4 nodes (p. 641), and there

are m of them (one per clause).

• Each XOR gadget contains 7 nodes (p. 660), and there

are 3m of them (one per literal).

• Each choice gadget contains 2 nodes (p. 652), and there

are n ≤ 3m of them (one per variable).

• So

M ≤ 4m + 21m + 6m = 31m.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660



The Proof: Construction of G (continued)

• #H ≤ 2L for some L = O(m log m).

– The maximum absolute value of the edge weight is 1.

– Hence each term in the permanent is at most 1.

– There are M ! ≤ (31m)! terms.

– Hence

#H ≤
√

2π(31m)

(
31m

e

)31m

e
1

12×(31m)

= 2O(m log m) (10)

by a refined Stirling’s formula.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661



The Proof: Construction of G (continued)

• Replace each edge with weight −1 with the following:

/����

• Each increases the number of cycle covers 2L+1-fold.

• The desired unweighted G has been obtained.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 662



The Proof (continued)

• #G equals #H after replacing each appearance −1 in

#H with 2L+1:

#H = · · · +

a cycle cover
︷ ︸︸ ︷

(−1) · 1 · · · · · 1 + · · · ,

#G = · · · +

a cycle cover
︷ ︸︸ ︷

2L+1 · 1 · · · · · 1 + · · · .

• Let #G =
∑n

i=0 ai × (2L+1)i, where 0 ≤ ai < 2L+1.

• As #H ≤ 2L even if we replace −1 by 1 (p. 662), each ai

equals the number of cycle covers with i edges of weight

−1.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663



The Proof (concluded)

• We conclude that

#H = a0 − a1 + a2 − · · · + (−1)nan,

indeed easily computable from #G.

• We know #H = 43m × #φ (p. 657).

• So

#φ =
a0 − a1 + a2 − · · · + (−1)nan

43m
.

– More succinctly,

#φ =
#G mod (2L+1 + 1)

43m
.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 664


