The Circuit Complexity of P

Proposition 69 *All languages in P have polynomial circuits.*

- Let $L \in P$ be decided by a TM in time $p(n)$.
- By Corollary 27 (p. 239), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0, 1\}^n$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.
Languages That Polynomial Circuits Accept

- Do polynomial circuits accept only languages in P?
- There are undecidable languages that have polynomial circuits.
 - Let $L \subseteq \{0, 1\}^*$ be an undecidable language.
 - Let $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}$.\(^a\)
 - U is also undecidable.
 - $U \cap \{1\}^n$ can be accepted by C_n that is trivially true if $1^n \in U$ and trivially false if $1^n \not\in U$.
 - The family of circuits (C_0, C_1, \ldots) is polynomial in size.

\(^a\)Assume n’s leading bit is always 1 without loss of generality.
A Patch

• Despite the simplicity of a circuit, the previous discussions imply the following:
 – Circuits are not a realistic model of computation.
 – Polynomial circuits are not a plausible notion of efficient computation.

• What gives?

• The effective and efficient constructibility of

 \[C_0, C_1, \ldots \]
Uniformity

• A family \((C_0, C_1, \ldots)\) of circuits is **uniform** if there is a log \(n\)-space bounded TM which on input \(1^n\) outputs \(C_n\).

 – Circuits now cannot accept undecidable languages (why?).

 – The circuit family on p. 484 is not constructible by a single Turing machine (algorithm).

• A language has **uniformly polynomial circuits** if there is a *uniform* family of polynomial circuits that decide it.
Uniformly Polynomial Circuits and P

Theorem 70 \(L \in P \) if and only if \(L \) has uniformly polynomial circuits.

- One direction was proved in Proposition 69 (p. 483).
- Now suppose \(L \) has uniformly polynomial circuits.
- Decide \(x \in L \) in polynomial time as follows:
 - Let \(n = |x| \).
 - Build \(C_n \) in \(\log n \) space, hence polynomial time.
 - Evaluate the circuit with input \(x \) in polynomial time.
- Therefore \(L \in P \).
Relation to P vs. NP

- Theorem 70 implies that $P \neq NP$ if and only if NP-complete problems have no uniformly polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, uniformly or not.
- The above is currently the preferred approach to proving the $P \neq NP$ conjecture—without success so far.
 - Theorem 14 (p. 153) states that there are boolean functions requiring $2^n/(2n)$ gates to compute.
 - In fact, almost all boolean functions do.
BPP’s Circuit Complexity

Theorem 71 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be nonconstructive in that only the existence of the desired circuits is shown.
 - Something exists if its probability of existence is nonzero.
- How to efficiently generate circuit C_n given 1^n is not known.
- If the construction of C_n is efficient, then $P = BPP$, an unlikely result.
The Proof

- Let $L \in \text{BPP}$ be decided by a precise NTM N by clear majority.

- We shall prove that L has polynomial circuits C_0, C_1, \ldots.

- Suppose N runs in time $p(n)$, where $p(n)$ is a polynomial.

- Let $A_n = \{a_1, a_2, \ldots, a_m\}$, where $a_i \in \{0, 1\}^{p(n)}$.

- Let $m = 12(n + 1)$.

- Each $a_i \in A_n$ represents a sequence of nondeterministic choices—i.e., a computation path—for N.
The Proof (continued)

• Let \(x \) be an input with \(|x| = n \).

• Circuit \(C_n \) simulates \(N \) on \(x \) with each sequence of choices in \(A_n \) and then takes the majority of the \(m \) outcomes.

• Because \(N \) with \(a_i \) is a polynomial-time TM, it can be simulated by polynomial circuits of size \(O(p(n)^2) \).
 – See the proof of Proposition 69 (p. 483).

• The size of \(C_n \) is therefore \(O(mp(n)^2) = O(np(n)^2) \), a polynomial.

• We next prove the existence of \(A_n \) making \(C_n \) correct.
The Proof (continued)

- Call a_i **bad** if it leads N to a false positive or a false negative answer.
- Select A_n *uniformly randomly*.
- For each $x \in \{0, 1\}^n$, $1/4$ of the computations of N are erroneous.
- Because the sequences in A_n are chosen randomly and independently, the expected number of bad a_i’s is $m/4$.
- By the Chernoff bound (p. 464), the probability that the number of bad a_i’s is $m/2$ or more is at most
 \[e^{-m/12} < 2^{-(n+1)}. \]
The Proof (concluded)

- The error probability is $< 2^{-(n+1)}$ for each $x \in \{0, 1\}^n$.

- The probability that there is an x such that A_n results in an incorrect answer is $< 2^n 2^{-(n+1)} = 2^{-1}$.

 - $\Pr[A \cup B \cup \cdots] \leq \Pr[A] + \Pr[B] + \cdots$.

- So with probability one half, a random A_n produces a correct C_n for all inputs of length n.

- Because this probability exceeds 0, an A_n that makes majority vote work for all inputs of length n exists.

- Hence a correct C_n exists.
Whoever wishes to keep a secret must hide the fact that he possesses one.
— Johann Wolfgang von Goethe (1749–1832)
Cryptography

- Alice (A) wants to send a message to Bob (B) over a channel monitored by Eve (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is cryptography.
Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.

• Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.

• Alice sends $y = E(e, x)$ to Bob, who then performs $D(d, y) = x$ to recover x.

• x is called plaintext, and y is called ciphertext.\(^a\)

\(^a\)Both “zero” and “cipher” come from the same Arab word.
Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
 - As D is public, d must be kept secret.
 - e may or may not be a secret.
Degrees of Security

• **Perfect secrecy**: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.

• Such systems are said to be **informationally secure**.

• A system is **computationally secure** if breaking it is theoretically possible but computationally infeasible.
Conditions for Perfect Secrecya

- Consider a cryptosystem where:
 - The space of ciphertext is as large as that of keys.
 - Every plaintext has a nonzero probability of being used.

- It is perfectly secure if and only if the following hold.
 - A key is chosen with uniform distribution.
 - For each plaintext x and ciphertext y, there exists a unique key e such that $E(e, x) = y$.

aShannon (1949).
The One-Time Pad

1: Alice generates a random string \(r \) as long as \(x \);
2: Alice sends \(r \) to Bob over a secret channel;
3: Alice sends \(r \oplus x \) to Bob over a public channel;
4: Bob receives \(y \);
5: Bob recovers \(x := y \oplus r \);

\(^a\)Mauborgne and Vernam (1917), Shannon (1949); allegedly used for the hotline between Russia and U.S.
Analysis

• The one-time pad uses $e = d = r$.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 501).

• The random bit string must be new for each round of communication.

 – Cryptographically strong pseudorandom generators require exchanging only the seed once.

• The assumption of a private channel is problematic.
Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send $E(e, x)$ to Bob.

• Knowing d, Bob can recover x by $D(d, E(e, x)) = x$.

• The assumptions are complexity-theoretic.

 − It is computationally difficult to compute d from e.

 − It is computationally difficult to compute x from y without knowing d.

aDiffie and Hellman (1976).
Complexity Issues

- Given y and x, it is easy to verify whether $E(e, x) = y$.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $P \neq NP$.
- But more is needed than $P \neq NP$.
- It is not sufficient that D is hard to compute in the worst case.
- It should be hard in “most” or “average” cases.
One-Way Functions

A function f is a **one-way function** if the following hold.\(^a\)

1. f is one-to-one.
2. For all $x \in \Sigma^*$, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some $k > 0$.
 - f is said to be **honest**.
3. f can be computed in polynomial time.
4. f^{-1} cannot be computed in polynomial time.
 - Exhaustive search works, but it is too slow.

\(^a\)Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).
Existence of One-Way Functions

• Even if $P \neq NP$, there is no guarantee that one-way functions exist.

• No functions have been proved to be one-way.

• Is breaking a glass a one-way function?
Candidates of One-Way Functions

- Modular exponentiation \(f(x) = g^x \mod p \), where \(g \) is a primitive root of \(p \).
 - Discrete logarithm is hard.\(^a\)

- The RSA\(^b\) function \(f(x) = x^e \mod pq \) for an odd \(e \) relatively prime to \(\phi(pq) \).
 - Breaking the RSA function is hard.

- Modular squaring \(f(x) = x^2 \mod pq \).
 - Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard—the quadratic residuacity assumption (QRA).

\(^a\)But it is in NP in some sense; Grollmann and Selman (1988).
\(^b\)Rivest, Shamir, and Adleman (1978).
The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - By Lemma 49 (p. 359),

 $$\phi(pq) = pq \left(1 - \frac{1}{p}\right) \left(1 - \frac{1}{q}\right) = pq - p - q + 1.$$

- As $\gcd(e, \phi(pq)) = 1$, there is a d such that
 $$ed \equiv 1 \mod \phi(pq),$$
 which can be found by the Euclidean algorithm.
A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes pq and the encryption key e, a number relatively prime to $\phi(pq)$.
 - The encryption function is $y = x^e \mod pq$.
- Knowing $\phi(pq)$, Bob calculates d such that $ed = 1 + k\phi(pq)$ for some $k \in \mathbb{Z}$.
 - The decryption function is $y^d \mod pq$.
 - It works because $y^d = x^{ed} = x^{1+k\phi(pq)} = x \mod pq$ by the Fermat-Euler theorem when $\gcd(x, pq) = 1$ (p. 367).
The “Security” of the RSA Function

• Factoring \(pq \) or calculating \(d \) from \((e, pq) \) seems hard.
 – See also p. 363.

• Breaking the last bit of RSA is as hard as breaking the RSA.\(^a\)

• Recommended RSA key sizes:
 – 1024 bits up to 2010.
 – 2048 bits up to 2030.
 – 3072 bits up to 2031 and beyond.

\(^a\)Alexi, Chor, Goldreich, and Schnorr (1988).
The “Security” of the RSA Function (concluded)

• Recall that problem A is “harder than” problem B if solving A results in solving B.
 – Factorization is “harder than” breaking the RSA.
 – Calculating Euler’s phi function is “harder than” breaking the RSA.
 – Factorization is “harder than” calculating Euler’s phi function (see Lemma 49 on p. 359).

• Factorization cannot be NP-hard unless NP = coNP.\(^a\)

• So breaking the RSA is unlikely to imply P = NP.

\(^a\)Brassard (1979).
The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob possessing the same key (p. 503).
- How can they agree on the same secret key when the channel is insecure?
- This is called the secret-key agreement problem.
- It was solved by Diffie and Hellman (1976) using one-way functions.
The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime \(p \) and a primitive root \(g \) of \(p \); \(\{p \text{ and } g \text{ are public.}\} \)
2: Alice chooses a large number \(a \) at random;
3: Alice computes \(\alpha = g^a \mod p \);
4: Bob chooses a large number \(b \) at random;
5: Bob computes \(\beta = g^b \mod p \);
6: Alice sends \(\alpha \) to Bob, and Bob sends \(\beta \) to Alice;
7: Alice computes her key \(\beta^a \mod p \);
8: Bob computes his key \(\alpha^b \mod p \);
Analysis

- The keys computed by Alice and Bob are identical:

\[\beta^a = g^{ba} = g^{ab} = \alpha^b \mod p. \]

- To compute the common key from \(p, g, \alpha, \beta \) is known as the **Diffie-Hellman problem**.

- It is conjectured to be hard.

- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
 - Because \(a \) and \(b \) can then be obtained by Eve.

- But the other direction is still open.
A Parallel History

- Diffie and Hellman’s solution to the secret-key agreement problem led to public-key cryptography.

- At around the same time (or earlier) in Britain, the RSA public-key cryptosystem was invented first before the Diffie-Hellman secret-key agreement scheme was.
 - Ellis, Cocks, and Williamson of the Communications Electronics Security Group of the British Government Communications Head Quarters (GCHQ).
Digital Signatures\(^a\)

- Alice wants to send Bob a signed document \(x\).
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys
 \[e_{Alice}, e_{Bob}, d_{Alice}, d_{Bob}. \]
- Assume the cryptosystem satisfies the commutative property
 \[E(e, D(d, x)) = D(d, E(e, x)). \quad (7) \]
 - As \((x^d)^e = (x^e)^d\), the RSA system satisfies it.
 - Every cryptosystem guarantees \(D(d, E(e, x)) = x\).

\(^a\)Diffie and Hellman (1976).
Digital Signatures Based on Public-Key Systems

- Alice signs x as
 \[(x, D(d_{\text{Alice}}, x)).\]

- Bob receives (x, y) and verifies the signature by checking
 \[E(e_{\text{Alice}}, y) = E(e_{\text{Alice}}, D(d_{\text{Alice}}, x)) = x\]
 based on Eq. (7).

- The claim of authenticity is founded on the difficulty of inverting E_{Alice} without knowing the key d_{Alice}.

- Warning: If Alice signs anything presented to her, she might inadvertently decrypt a ciphertext of hers.
Mental Pokera

- Suppose Alice and Bob have agreed on 3 n-bit numbers $a < b < c$, the cards.
- They want to randomly choose one card each, so that:
 - Their cards are different.
 - All 6 pairs of distinct cards are equiprobable.
 - Alice’s (Bob’s) card is known to Alice (Bob) but not to Bob (Alice), until Alice (Bob) announces it.
 - The person with the highest card wins the game.
 - The outcome is indisputable.
- Assume Alice and Bob will not deviate from the protocol.

aShamir, Rivest, and Adleman (1981).
The Setup

- Alice and Bob agree on a large prime p;

- Each has two secret keys $e_{\text{Alice}}, e_{\text{Bob}}, d_{\text{Alice}}, d_{\text{Bob}}$ such that $e_{\text{Alice}}d_{\text{Alice}} = e_{\text{Bob}}d_{\text{Bob}} = 1 \mod (p - 1)$;
 - This ensures that $(x^{e_{\text{Alice}}})^{d_{\text{Alice}}} = x \mod p$ and $(x^{e_{\text{Bob}}})^{d_{\text{Bob}}} = x \mod p$.

- The protocol lets Bob pick Alice’s card and Alice pick Bob’s card.

- Cryptographic techniques make it plausible that Alice’s and Bob’s choices are practically random, for lack of time to break the system.
The Protocol

1: Alice encrypts the cards

\[a^{e_{Alice}} \mod p, b^{e_{Alice}} \mod p, c^{e_{Alice}} \mod p \]

and sends them in random order to Bob;

1: Bob picks one of the messages \(x^{e_{Alice}} \) to send to Alice;
2: Alice decodes it \((x^{e_{Alice}})^{d_{Alice}} = x \mod p \) for her card;
3: Bob encrypts the two remaining cards
\[(x^{e_{Alice}})^{e_{Bob}} \mod p, (y^{e_{Alice}})^{e_{Bob}} \mod p \]
and sends them in random order to Alice;
4: Alice picks one of the messages, \((z^{e_{Alice}})^{e_{Bob}} \), encrypts it
\[((z^{e_{Alice}})^{e_{Bob}})^{d_{Alice}} \mod p \]
and sends it to Bob;
5: Bob decrypts the message
\[(((z^{e_{Alice}})^{e_{Bob}})^{d_{Alice}})^{d_{Bob}} = z \mod p \] for his card;
Probabilistic Encryptiona

- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!

- What is required is a scheme that does not “leak” partial information.

- The first solution to the problems of skewed distribution and partial information was based on the QRA.

aGoldwasser and Micali (1982).
The Setup

- Bob publishes $n = pq$, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- To send bit string $b_1 b_2 \cdots b_k$ to Bob, Alice encrypts the bits by choosing a random quadratic residue modulo n if b_i is 1 and a random quadratic nonresidue with Jacobi symbol 1 otherwise.
- A sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.
A Useful Lemma

Lemma 72 Let \(n = pq \) be a product of two distinct primes. Then a number \(y \in \mathbb{Z}_n^* \) is a quadratic residue modulo \(n \) if and only if \((y \mid p) = (y \mid q) = 1\).

- The “only if” part:
 - Let \(x \) be a solution to \(x^2 = y \mod pq \).
 - Then \(x^2 = y \mod p \) and \(x^2 = y \mod q \) also hold.
 - Hence \(y \) is a quadratic modulo \(p \) and a quadratic residue modulo \(q \).
The Proof (concluded)

• The “if” part:
 – Let $a_1^2 = y \mod p$ and $a_2^2 = y \mod q$.
 – Solve

 $$x = a_1 \mod p,$$
 $$x = a_2 \mod q,$$

 for x with the Chinese remainder theorem.
 – As $x^2 = y \mod p$, $x^2 = y \mod q$, and $\gcd(p, q) = 1$,
 we must have $x^2 = y \mod pq$.
The Protocol for Alice

1: for $i = 1, 2, \ldots, k$ do
2: Pick $r \in Z_n^*$ randomly;
3: if $b_i = 1$ then
4: Send $r^2 \text{ mod } n$; \{Jacobi symbol is 1.\}
5: else
6: Send $r^2y \text{ mod } n$; \{Jacobi symbol is still 1.\}
7: end if
8: end for
The Protocol for Bob

1: for $i = 1, 2, \ldots, k$ do
2: Receive r;
3: if $(r | p) = 1$ and $(r | q) = 1$ then
4: $b_i := 1$;
5: else
6: $b_i := 0$;
7: end if
8: end for
Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- This scheme is both polynomially secure and semantically secure.