A Patch

e Despite the simplicity of a circuit, the previous

discussions imply the following:
— Circuits are not a realistic model of computation.

— Polynomial circuits are not a plausible notion of

efficient computation.

e What gives?

e The effective and efficient constructibility of

Co,Ch,. ...
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Uniformity

e A family (Cy, Cq,...) of circuits is uniform if there is a

log n-space bounded TM which on input 1™ outputs C,,.

— Circuits now cannot accept undecidable languages
(why?).
— The circuit family on p. 484 is not constructible by a

single Turing machine (algorithm).

e A language has uniformly polynomial circuits if
there is a uniform family of polynomial circuits that
decide it.
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Uniformly Polynomial Circuits and P

Theorem 70 L € P if and only if L has uniformly

polynomaial circuaits.
e One direction was proved in Proposition 69 (p. 483).
e Now suppose L has uniformly polynomial circuits.

e Decide x € L in polynomial time as follows:
— Let n = x|.
— Build (), in logn space, hence polynomial time.

— Evaluate the circuit with input = in polynomial time.

e Therefore L € P.
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Relation to P vs. NP
e Theorem 70 implies that P # NP if and only if

NP-complete problems have no uniformly polynomial

circuits.

e A stronger conjecture: NP-complete problems have no

polynomial circuits, uniformly or not.

e The above is currently the preferred approach to proving

the P # NP conjecture—without success so far.

— Theorem 14 (p. 153) states that there are boolean

functions requiring 2" /(2n) gates to compute.

— In fact, almost all boolean functions do.
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BPP’'s Circuit Complexity

Theorem 71 (Adleman (1978)) All languages in BPP

have polynomial circuits.
e Our proof will be nonconstructive in that only the
existence of the desired circuits is shown.
— Something exists if its probability of existence is

1NONZero.

e How to efficiently generate circuit C,, given 1™ is not

known.

e If the construction of C,, is efficient, then P = BPP, an

unlikely result.
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The Proof
Let L € BPP be decided by a precise NTM N by clear

majority.
We shall prove that L has polynomial circuits Cy, (1, .. ..

Suppose N runs in time p(n), where p(n) is a

polynomial.

Let A, = {ai1,as,...,a,}, where a; € {0,1}P(").

Let m =12(n 4+ 1).

Each a; € A,, represents a sequence of nondeterministic

choices—i.e., a computation path—for V.
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The Proof (continued)

Let  be an input with |z | = n.

Circuit C,, simulates N on x with each sequence of
choices in A,, and then takes the majority of the m

outcomes.

Because N with a; is a polynomial-time TM, it can be

simulated by polynomial circuits of size O(p(n)?).

— See the proof of Proposition 69 (p. 483).
The size of C,, is therefore O(mp(n)?) = O(np(n)?), a

polynomial.

We next prove the existence of A,, making C,, correct.
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The Circuit

Majority logic
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The Proof (continued)

Call a; bad if it leads N to a false positive or a false

negative answer.
Select A,, uniformly randomly.

For each x € {0,1}", 1/4 of the computations of N are

erroineous.

Because the sequences in A,, are chosen randomly and

independently, the expected number of bad a;’s is m /4.
By the Chernoff bound (p. 464), the probability that the

number of bad a;’s is m/2 or more is at most

6—m/12 < 2—(n—|—1) .
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The Proof (concluded)

The error probability is < 27+ for each = € {0,1}".

The probability that there is an x such that A,, results

in an incorrect answer is < 2n2—(n+1) — 9—1

— problAUBU -] < prob|A]+ prob[B]|+ ---

So with probability one half, a random A,, produces a

correct C,, for all inputs of length n.

Because this probability exceeds 0, an A,, that makes

majority vote work for all inputs of length n exists.

Hence a correct C,, exists.
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Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.
— Johann Wolfgang von Goethe (1749-1832)
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Cryptography

e Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

e The protocol should be such that the message is known
only to Alice and Bob.

e The art and science of keeping messages secure is

cryptography.
Eve
Alice > Bob
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Encryption and Decryption

Alice and Bob agree on two algorithms F and D—the
encryption and the decryption algorithms.

Both E and D are known to the public in the analysis.
Alice runs F and wants to send a message x to Bob.
Bob operates D.

Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

Alice sends y = E(e, z) to Bob, who then performs
D(d,y) = x to recover .

e 1 is called plaintext, and y is called ciphertext.?

2Both “zero” and “cipher” come from the same Arab word.
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Some Requirements

e D should be an inverse of F given e and d.

e D and E must both run in (probabilistic) polynomial

time.

e Eve should not be able to recover x from y without
knowing d.
— As D is public, d must be kept secret.

— e may or may not be a secret.
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Degrees of Security

Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the

interception.
Such systems are said to be informationally secure.

A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecy?®

e Consider a cryptosystem where:
— The space of ciphertext is as large as that of keys.
— Every plaintext has a nonzero probability of being
used.
e It is perfectly secure if and only if the following hold.
— A key is chosen with uniform distribution.

— For each plaintext z and ciphertext y, there exists a

unique key e such that E(e,x) = v.

aShannon (1949).
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The One-Time Pad?

. Alice generates a random string r as long as x;

. Alice sends r to Bob over a secret channel;
. Alice sends r @ x to Bob over a public channel;
. Bob receives y;

. Bob recovers x :=y & r;

2Mauborgne and Vernam (1917), Shannon (1949); allegedly used for
the hotline between Russia and U.S.
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Analysis

The one-time pad uses e =d = r.
This is said to be a private-key cryptosystem.
Knowing x and knowing r are equivalent.

Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 501).

The random bit string must be new for each round of
communication.
— Cryptographically strong pseudorandom

generators require exchanging only the seed once.

The assumption of a private channel is problematic.
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Public-Key Cryptography?

Suppose only d is private to Bob, whereas e is public

knowledge.

Bob generates the (e, d) pair and publishes e.
Anybody like Alice can send F(e,z) to Bob.
Knowing d, Bob can recover x by D(d, E(e,x)) = x.

The assumptions are complexity-theoretic.
— It is computationally difficult to compute d from e.

— It is computationally difficult to compute x from y

without knowing d.

2Diffie and Hellman (1976).
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Complexity Issues

Given y and x, it is easy to verify whether E(e,z) = v.
Hence one can always guess an = and verify.
Cracking a public-key cryptosystem is thus in NP.

A necessary condition for the existence of secure

public-key cryptosystems is P # NP.
But more is needed than P # NP.

It is not sufficient that D is hard to compute in the

worst case.

It should be hard in “most” or “average” cases.
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One-Way Functions
A function f is a one-way function if the following hold.?

1. f is one-to-one.

2. For all x € %, |2 |1k < |f(x)| < |z |* for some k > 0.

e f is said to be honest.
3. f can be computed in polynomial time.

4. f~! cannot be computed in polynomial time.

e Exhaustive search works, but it is too slow.

2Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann
and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe
(1985); Young (1983).
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Existence of One-Way Functions

e Even if P #£ NP, there is no guarantee that one-way

functions exist.
e No functions have been proved to be one-way.

e Is breaking a glass a one-way function?
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UPp*

e An NTM that has at most one accepting computation

for any input is called an unambiguous Turing
machine (UTM).

e UP denotes the set of languages accepted by UTMs in

polynomial time.

e Obviously, P C UP C NP.

aValiant (1976).
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SAT and UP

e SAT is not expected to be in UP (so UP # NP).

— Suppose SAT € UP.
Then there is an NTM M that has a single accepting

computation path for all satisfiable boolean

expressions.
But M runs in polynomial time.

Hence M does not try all truth assignments for

satisfiable boolean expressions.

At present, this seems implausible.
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UP and One-Way Functions®

Theorem 72 One-way functions exist if and only if
P £ UP.

e Suppose there exists a one-way function f.

e Define language

Ly ={(x,y): 3z such that f(z) =y and z < x }.
— Relation “<” orders strings of { 0,1 }* first by length
and then lexicographically.

— S0e<0<1<00<0l<10<1l <",

2Ko (1985); Grollmann and Selman (1988).
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The Proof (continued)

° Lf e UP.
— There i1s an UTM M that accepts L.

* M on input (z,y) nondeterministically guesses a
string z of length at most |y |*.

x M tests if y = f(2).

x If the answer is “yes” (this happens at most once

because f is one-to-one) and z < x, M accepts.
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The Proof (continued)

o Ly ZP.
— Suppose there is a polynomial-time algorithm for L.

— Then f(x) =y can be inverted.
Given y, ask (1|y|k,y) € Ly.

> we know x does not exist as

If the answer is “no,’
any such x must satisfy |z | < |y |”.
Otherwise, ask
(11v1°=1 ) € Ly, (11v1"=2 ) € Ly, ... until we got
a “no” for (1*71,y) € Ly.

* This means | x| = /.

— The procedure makes O(|y |¥) calls to L.
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The Proof (continued)

e (continued)

— % Now conduct a binary search to find each bit of x
as follows.
« If (01°71,y) € Ly, then x = 0--- and we recur by
asking “(001°72,y) € L;?”
« If (0171 y) & Ly, then x = 1--- and we recur by
asking (101°72,y) € L?”

— The procedure makes O(|y |*) calls to L.
e P -4 UP because Ly ¢ UP —P.
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The Proof (continued)
Now suppose P # UP with L € UP — P.
Let L be accepted by an UTM M.

comp,,(y) denotes an accepting computation of M (y).

Define

ly if x = comp,,(y),

Ox otherwise.

fu(x) =

far is well-defined as y is part of comp,,(y) (recall
p. 238) and there is at most one accepting computation
for y.

So far is a total function.
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The Proof (concluded)

e f)s is one-way.

— The lengths of argument and results are polynomially

related as M has polynomially long computations.

— far is one-to-one because f(z) = f(2’) means that

x = 2’ by the use of the flag and unambiguity of M.

— far can be inverted on 1y if and only if M accepts y
(i.e.,ify e L).
— Were we able to invert fj; in polynomial time, then

we would be able to decide L in polynomial time.
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Complexity Issues

For a language in UP, there is either 0 or 1 accepting
path.

So similar to RP, there are not likely to be UP-complete

problems.

Relating a cryptosystem with an NP-complete problem
has been argued before to be not useful (p. 505).

Theorem 72 (p. 510) shows that the relevant question is
the P = UP question.

There are stronger notions of one-way functions.
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Candidates of One-Way Functions

e Modular exponentiation f(x) = ¢g* mod p, where g is a

primitive root of p.

— Discrete logarithm is hard.”

e The RSA® function f(z) = z° mod pq for an odd e relatively

prime to ¢(pq).
— Breaking the RSA function is hard.

e Modular squaring f(z) = 2* mod pq.

— Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic residuacity
assumption (QRA).

2But it is in NP in some sense; Grollmann and Selman (1988).
PRivest, Shamir, and Adleman (1978).
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The RSA Function

e Let p,q be two distinct primes.

e The RSA function is ¢ mod pq for an odd e relatively

prime to ¢(pq).
— By Lemma 49 (p. 359),

1

o(pq) = pq (1 5

e As ged(e, d(pq)) = 1, there is a d such that
ed = 1 mod ¢(pq),

which can be found by the Euclidean algorithm.
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A Public-Key Cryptosystem Based on RSA

e Bob generates p and q.
e Bob publishes pg and the encryption key e, a number
relatively prime to ¢(pq).
— The encryption function is y = x° mod pq.
e Knowing ¢(pq), Bob calculates d such that
ed =1+ k¢(pq) for some k € Z.
— The decryption function is y¢ mod pq.

— It works because y¢ = z¢% = z11+¢(P?) = x mod pq by
the Fermat-Euler theorem when ged(z, pq) = 1
(p. 367).
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The “Security” of the RSA Function

e Factoring pq or calculating d from (e, pq) seems hard.

— See also p. 363.

e Breaking the last bit of RSA is as hard as breaking the
RSA.?
e Recommended RSA key sizes:
— 1024 bits up to 2010.
— 2048 bits up to 2030.
— 3072 bits up to 2031 and beyond.

2Alexi, Chor, Goldreich, and Schnorr (1988).
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The “Security” of the RSA Function (concluded)

e Recall that problem A is “harder than” problem B if

solving A results in solving B.
— Factorization is “harder than” breaking the RSA.

— Calculating Euler’s phi function is “harder than”

breaking the RSA.

— Factorization is “harder than” calculating Euler’s phi

function (see Lemma 49 on p. 359).

e Factorization cannot be NP-hard unless NP = coNP.?

e So breaking the RSA is unlikely to imply P = NP.

2Brassard (1979).
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The Secret-Key Agreement Problem

Exchanging messages securely using a private-key
cryptosystem requires Alice and Bob possessing the

same key (p. 503).

How can they agree on the same secret key when the

channel is insecure?

This is called the secret-key agreement problem.

It was solved by Diffie and Hellman (1976) using

one-way functions.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}

. Alice chooses a large number a at random:;

. Alice computes a = g* mod p;

: Bob chooses a large number b at random:;

. Bob computes 3 = ¢” mod p:;

. Alice sends « to Bob, and Bob sends 3 to Alice;

. Alice computes her key 5% mod p;

. Bob computes his key a® mod p;
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Analysis

The keys computed by Alice and Bob are identical:

6& _ gba _ gab _ Oéb mod D.

To compute the common key from p, g, o, 3 is known as
the Diffie-Hellman problem.

It is conjectured to be hard.

If discrete logarithm is easy, then one can solve the

Diffie-Hellman problem.

— Because a and b can then be obtained by Eve.

But the other direction is still open.
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A Parallel History

e Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

e At around the same time (or earlier) in Britain, the
RSA public-key cryptosystem was invented first before

the Diffie-Hellman secret-key agreement scheme was.

— Ellis, Cocks, and Williamson of the Communications
Electronics Security Group of the British Government
Communications Head Quarters (GCHQ).
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Digital Signatures®

Alice wants to send Bob a signed document x.
The signature must unmistakably identifies the sender.
Both Alice and Bob have public and private keys
€Alice, €Bobs dAlice; dBob-
Assume the cryptosystem satisfies the commutative property
E(e,D(d,z)) = D(d, E(e, x)). (7)

— As (z%)° = (2°)%, the RSA system satisfies it.

— Every cryptosystem guarantees D(d, E(e,x)) = .

2Diffie and Hellman (1976).
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Digital Signatures Based on Public-Key Systems

Alice signs x as
(CL’, D(dAlicea ZU))

Bob receives (x,y) and verifies the signature by checking

E(eatice, y) = E(ealice; D(dAlice, T)) =
based on Eq. (7).

The claim of authenticity is founded on the difficulty of
inverting Fajice Wwithout knowing the key dajice.

Warning: If Alice signs anything presented to her, she
might inadvertently decrypt a ciphertext of hers.
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Mental Poker?

e Suppose Alice and Bob have agreed on 3 n-bit numbers
a < b < ¢, the cards.
e They want to randomly choose one card each, so that:
Their cards are different.

All 6 pairs of distinct cards are equiprobable.

Alice’s (Bob’s) card is known to Alice (Bob) but not to
Bob (Alice), until Alice (Bob) announces it.

The person with the highest card wins the game.

— The outcome is indisputable.

e Assume Alice and Bob will not deviate from the protocol.

a@Shamir, Rivest, and Adleman (1981).
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The Setup

Alice and Bob agree on a large prime p;

Each has two secret keys €atice, €Bobs Alices @dBob Such
that eAlicedAlice — 6Bodeob = 1 mod (p — 1)7

— This ensures that (z¢Atice)datice = x mod p and

(xeBob)dBob — 2 mod p.

The protocol lets Bob pick Alice’s card and Alice pick
Bob’s card.

Cryptographic techniques make it plausible that Alice’s
and Bob’s choices are practically random, for lack of

time to break the system.
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The Protocol
. Alice encrypts the cards

aeAlice IIlOd p’ beAlice IIlOd p’ CeAlice mOd p

and sends them in random order to Bob;

. Bob picks one of the messages x¢Alice to send to Alice;

. Alice decodes it (x®atice)datice = 3 mod p for her card;

. Bob encrypts the two remaining cards
(x€atice )Bob mod p, (y€Alice )®Beb mod p and sends them in
random order to Alice;

. Alice picks one of the messages, (zAtice)Beb encrypts it
((zeatice )eBob)datice mod p, and sends it to Bob:

. Bob decrypts the message

(((ZeAlice)eBob)dAlice)dBob =z mOd p fOI- hlS Card,
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Probabilistic Encryption®

The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security

weakness if those strings were the probable ones!

What is required is a scheme that does not “leak”

partial information.

The first solution to the problems of skewed distribution

and partial information was based on the QRA.

2Goldwasser and Micali (1982).
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The Setup

Bob publishes n = pg, a product of two distinct primes,

and a quadratic nonresidue y with Jacobi symbol 1.
Bob keeps secret the factorization of n.

To send bit string b1bs - - - by, to Bob, Alice encrypts the
bits by choosing a random quadratic residue modulo n if
b; is 1 and a random quadratic nonresidue with Jacobi

symbol 1 otherwise.
A sequence of residues and nonresidues are sent.

Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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A Useful Lemma

Lemma 73 Let n = pq be a product of two distinct primes.

Then a number y € Z is a quadratic residue modulo n if

and only if (y|p) = (y|q) = 1.

e The “only if” part:

— Let z be a solution to 2 = vy mod pg.

— Then 2? = y mod p and z? = y mod ¢ also hold.

— Hence vy is a quadratic modulo p and a quadratic

residue modulo gq.
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The Proof (concluded)

e The “if” part:
— Let a® = y mod p and a3 = y mod gq.

— Solve

r = a; modp,

x as mod g,

for x with the Chinese remainder theorem.

— As 22 = y mod p, * = y mod ¢, and ged(p, q) = 1,
2

we must have x° = y mod pq.
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The Protocol for Alice
1: for:=1,2,..., k do
Pick r € Z; randomly;
if b; =1 then
Send r? mod n; {Jacobi symbol is 1.}

Send r?y mod n; {Jacobi symbol is still 1.}
end if

end for

2:
3
4
5: else
6
7
8:
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The Protocol for Bob
. fori:=1,2,...,k do
Receive r;
if (r|p)=1and (r|q) =1 then

b, .= 1;
else
b; == 0;
end if
. end for
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Semantic Security

This encryption scheme is probabilistic.

There are a large number of different encryptions of a

given message.

One is chosen at random by the sender to represent the

message.

This scheme is both polynomially secure and

semantically secure.
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What Is a Proof?

A proof convinces a party of a certain claim.

— “Is g™ +y™ # 2" for all z,y,2 € ZT and n > 27"

— “Is graph G Hamiltonian?”
— “Is P = x mod p for prime p and p fx?”
In mathematics, a proof is a fixed sequence of theorems.

— Think of a written examination.

We will extend a proof to cover a proof process by which

the validity of the assertion is established.

— Think of a job interview or an oral examination.
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Prover and Verifier

There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

The verifier’s objective is to accept only correct

assertions (soundness).
The verifier usually has an easier job than the prover.

e The setup is very much like the Turing test.?

2Turing (1950).
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Interactive Proof Systems

An interactive proof for a language L is a sequence of

questions and answers between the two parties.

At the end of the interaction, the verifier decides based
on the knowledge he acquired in the proof process

whether the claim is true or false.

The verifier must be a probabilistic polynomial-time
algorithm.
The prover runs an exponential-time algorithm.

— If the prover is not more powerful than the verifier,

no interaction is needed.
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Interactive Proof Systems (concluded)

e The system decides L if the following two conditions

hold for any common input z.

— If x € L, then the probability that x is accepted by

the verifier is at least 1 — 2~ 121

— If = ¢ L, then the probability that x is accepted by
the verifier with any prover replacing the original

prover 1s at most oIl

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |z |.
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An Interactive Proof
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P2

e IP is the class of all languages decided by an interactive

proof system.

e When x € L, the completeness condition can be

modified to require that the verifier accepts with

certainty without affecting IP.P

e Similar things cannot be said of the soundness condition
when x & L.

e Verifier’s coin flips can be public.°©

2Goldwasser, Micali, and Rackoff (1985).

PGoldreich, Mansour, and Sipser (1987).
°Goldwasser and Sipser (1989).
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The Relations of IP with Other Classes
e NP C IP.

— IP becomes NP when the verifier is deterministic.

e BPP C IP.
— IP becomes BPP when the verifier ignores the

prover’s messages.

e [P actually coincides with PSPACE (see the textbook

for a proof).?

aShamir (1990).
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