Primality Tests

e PRIMES asks if a number N is a prime.

e The classic algorithm tests if k| N for k =2,3,...,VN.

e But it runs in Q(2"/?) steps, where n = | N | = log, N.
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The Density Attack for PRIMES

. Pick k € {2,..., N — 1} randomly; {Assume N > 2.}
. if k| N then

return “/N is composite”;
. else
. return “N is a prime”;
. end if
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Analysis®

e Suppose N = P(), a product of 2 primes.

e The probability of success is

le_(P—l)(Q—l) _Pr@-1

<=5 PO PO

e In the case where P = (), this probability becomes

R
P Q VN

e This probability is exponentially small.

@See also p. 363.
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The Fermat Test for Primality

Fermat’s “little” theorem on p. 365 suggests the following

primality test for any given number p:

. Pick a number a randomly from {1,2,..., N — 1};
. if 71 #£ 1 mod N then

return “/N is composite”;

. return “N is probably a prime”;
. end if

1
2
3
4: else
5
6
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The Fermat Test for Primality (concluded)

e Unfortunately, there are composite numbers called

Carmichael numbers that will pass the Fermat test
for all a € {1,2,..., N — 1}.

e There are infinitely many Carmichael numbers.?

2Alford, Granville, and Pomerance (1992).
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Square Roots Modulo a Prime

e Equation 22 = a mod p has at most two (distinct) roots

by Lemma 54 (p. 370).
— The roots are called square roots.

— Numbers a with square roots and ged(a,p) = 1 are

called quadratic residues.

+ They are 12 mod p,22 mod p, ..., (p — 1)? mod p.

e We shall show that a number either has two roots or has

none, and testing which one is true is trivial.

e There are no known efficient deterministic algorithms to
find the roots.
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Euler's Test

Lemma 60 (Euler) Let p be an odd prime and
a # 0 mod p.

1. If a'P=1/2 = 1 mod p, then 2 = a mod p has two roots.

2. If aP=1/2 £ 1 mod p, then aP~1/2 = —1 mod p and

r? = a mod p has no roots.

Let r be a primitive root of p.

By Fermat’s “little” theorem, r(P=1)/2 is a square root of
1, so rP=1/2 = 41 mod p.

But as r is a primitive root, #?=1/2 £ 1 mod p.

Hence rP=1/2 = —_1 mod p.
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The Proof (continued)

e Suppose a = 1% for some 1 < j < (p—1)/2.

e Then aP~1)/2 = +iP=1) = 1 mod p and its two distinct
roots are 17, —rd(= rit(P=1/2),
— If 7 = —rJ mod p, then 21/ = 0 mod p, which implies

rJ = 0 mod p, a contradiction.

e As1 <5< (p—1)/2, there are (p — 1)/2 such a’s.
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The Proof (continued)

Each such a has 2 distinct square roots.

The square roots of all the a’s are distinct.

— The square roots of different a’s must be different.

Hence the set of square roots is {1,2,...,p — 1}.

— Because there are (p — 1)/2 such a’s and each a has

two square roots.

As aresult,a =7%,1<j < (p—1)/2, are all the

quadratic residues.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 428



The Proof (concluded)

o If a = r?7™! then it has no roots because all the square

roots have been taken.
e Now,

aP—1)/2 _ [T(p—l)/2]2j+1 _ (_1)2j+1 — —1 mod p.
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The Legendre Symbol® and Quadratic Residuacity Test
By Lemma 60 (p. 426) a?~1/2 mod p = +1 for
a # 0 mod p.

For odd prime p, define the Legendre symbol (a|p) as

(

0 if p|a,

(alp) =4 1 ifais a quadratic residue modulo p,

| —1 if a is a quadratic nonresidue modulo p.

Euler’s test implies a®~1/2 = (a | p) mod p for any odd

prime p and any integer a.

e Note that (ablp) = (a|p)(b|p).

& Andrien-Marie Legendre (1752—-1833).
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Gauss's Lemma

Lemma 61 (Gauss) Let p and q be two odd primes. Then
(qlp) = (=1)™, where m is the number of residues in
R={igmodp:1<i<(p—1)/2} that are greater than
(p—1)/2.

e All residues in R are distinct.
— If ig = jq mod p, then p|(j — i) q or plq.

e No two elements of R add up to p.

— If ig + jq = 0 mod p, then p|(i + j) or plq.

— But neither is possible.
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The Proof (continued)

e Consider the set R’ of residues that result from R if we

replace each of the m elements a € R such that
a>(p—1)/2 by p— a.

— This is equivalent to performing —a mod p.
e All residues in R’ are now at most (p — 1)/2.

e In fact, R" ={1,2,...,(p—1)/2} (see illustration next
page).
— Otherwise, two elements of R would add up to p,

which has been shown to be impossible.
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p="7and g =>5.
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The Proof (concluded)

Alternatively, R' = {+igmod p:1<i<(p—1)/2},

where exactly m of the elements have the minus sign.

Take the product of all elements in the two

representations of R’.
So [(p— 1)/2)! = (=1)™¢P~Y/?[(p — 1)/2]! mod p.

Because ged([(p — 1)/2]!,p) = 1, the above implies

1= (—1)"¢»" /2 mod p.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 434



Legendre's Law of Quadratic Reciprocity®

e Let p and ¢ be two odd primes.

e The next result says their Legendre symbols are distinct

if and only if both numbers are 3 mod 4.

Lemma 62 (Legendre (1785), Gauss)

p—1 g—1

(rlg)(glp) = (=1) =z =,

2First stated by Euler in 1751. Legendre (1785) did not give a correct
proof. Gauss proved the theorem when he was 19. He gave at least 6

different proofs during his life. The 152nd proof appeared in 1963.
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The Proof (continued)

e Sum the elements of R’ in the previous proof in mod?2.
e On one hand, this is just Zgizl)ﬂi mod 2.

e On the other hand, the sum equals

(p—1)/2 iq
Z (qi—p{—J)—Fmpmon
p

i=1
(p—1)/2 (p—1)/2

q 2: 1 —p E: { J + mp mod 2.

1=1

— Signs are irrelevant under mod?2.

— m is as in Lemma 61 (p. 431).
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The Proof (continued)

e Ignore odd multipliers to make the sum equal

(p—1)/2 (p—1)/2

Soim ) HIEEEH

e Fquate the above with Z<p D/2 i mod 2 to obtain

ne Y

ﬂJ mod 2.
i=1

p
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The Proof (concluded)

ZEZ}W ° L%J is the number of integral points under the
liney = (¢/p)xfor 1 <z < (p—1)/2.

Gauss’s lemma (p. 431) says (¢q|p) = (—1)™.
Repeat the proof with p and ¢ reversed.

So (plg) = (—1)™, where m/ is the number of integral
points above the line y = (¢/p)x for 1 <y < (¢ —1)/2.

As a result, (plq)(qlp) = (=1)™ ™"

But m + m/ is the total number of integral points in the

p—1 < q—1 p—1 g—1

5 5— rectangle, which is == “5-.
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Eisenstein’s Rectangle

p=1land g = 7.
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The Jacobi Symbol®

The Legendre symbol only works for odd prime moduli.

The Jacobi symbol (a|m) extends it to cases where m

1S not prime.
Let m = pi1p2 - - - pr. be the prime factorization of m.

When m > 1 is odd and ged(a, m) = 1, then

k

(alm) = ] [(alps).

1=1

e Define (a|1) = 1.

2Carl Jacobi (1804—-1851).
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for

arguments for which it is defined.
1. (ab|lm) = (a|m)(b|m).
2. (a|mims) = (a|mq)(a|me).

. If a = b mod m, then (a|m) = (b|m).

3
4. (=1|m) = (=1)m=D/2 (by Lemma 61 on p. 431).

. (2|m) = (=1)(™*=D/8 (by Lemma 61 on p. 431).

. If a and m are both odd, then
(a|m)(m|a) = (=1)le=Dim=D/A,
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Calculation of (2200[999)

Similar to the Euclidean algorithm and does not require

factorization.
202(999) = (—1)22°~1/8(101]999)
—1)"**7°(101]999) = (101]999)
—1)(100)998)/4999|101) = (—1)2**5°(999|101)

) = (90[101) = (—1)T°=D/8(45]101)
—1)""°(45]101) = —(45|101)
—(—1)DE00/4 (107 |45) = —(101]45) = —(11]45)
— (=) (45111) = —(45|11)
—(1]11) = —(11]1) = —1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 63 The group of set ®(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,
pk, or 2p"C for some nonnegative integer k and and odd

prime p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Test?®

Lemma 64 If (M|N) = MW=Y/2mod N for all
M € ®(N), then N is prime. (Assume N is odd.)

e Assume N = mp, where p is an odd prime, gcd(m,p) = 1,

and m > 1 (not necessarily prime).
o Let r € ®(p) such that (r|p) = —1.

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M = r modp,
M = 1 modm.

@Mr. Clement Hsiao (R88526067) pointed out that the textbook’s

proof in Lemma 11.8 is incorrect while he was a senior in January 1999.
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The Proof (continued)

e By the hypothesis,

MWN=D/2 — (M| N) = (M|p)(M|m)=—1mod N.

e Hence
MWN=1/2 — _1 mod m.

e But because M = 1 mod m,
MWN=D/2 =1 mod m,

a contradiction.
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The Proof (continued)

e Second, assume that NV = p®, where p is an odd prime
and a > 2.

e By Theorem 63 (p. 443), there exists a primitive root r

modulo p?.

e From the assumption,

2
MV = [MW_”/Q} — (M|N)2 =1 mod N

for all M € ®(N).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 446



The Proof (continued)

e Asr e ®(N) (prove it), we have

rN=1 — 1 mod N.

e As r’s exponent modulo N = p® is ¢(NV)

pa—1<p_ 1) | N — 17

which implies that p| N — 1.

e But this is impossible given that p| N.
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The Proof (continued)

Third, assume that N = mp®, where p is an odd prime,
ged(m,p) =1, m > 1 (not necessarily prime), and a is

even.
The proof mimics that of the second case.

By Theorem 63 (p. 443), there exists a primitive root r

modulo p?.

From the assumption,

2
MV = [MW_”/Q} — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e In particular,

MYt =1 mod p* (6)
for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M r mod p“,
M 1 mod m.

e Because M = r mod p® and Eq. (6),

rV =1 = 1 mod p?.
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The Proof (concluded)

e As r’s exponent modulo N = p® is ¢(N)
pa—1<p o 1) | N — 17
which implies that p| N — 1.

e But this is impossible given that p | N.
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The Number of Witnesses to Compositeness

Theorem 65 (Solovay and Strassen (1977)) If N is an
odd composite, then (M|N) # MWN=1/2 mod N for at least
half of M € ®(N).

e By Lemma 64 (p. 444) there is at least one a € ®(V)

such that (a|N) # aN=1)/2 mod N.

o Let B=1{by,ba,...,b} C ®(N) be the set of all distinct
residues such that (b;|N) = bEN_l)/Q mod N.

o Let aB ={ab;mod N :i=1,2,... k}.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 451



The Proof (concluded)

e [aB|=k.
— ab; = ab; mod N implies Nla(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b;|.
e aB N B = () because

(aby) N2 = N DRI oL (0| N (6| N) = (abi|N).

e Combining the above two results, we know

1Bl 5
o(N) —
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if N is even but N # 2 then
return “/N is composite”;
else if N = 2 then
return “N is a prime”;
end if
Pick M € {2,3,..., N — 1} randomly;
if gcd(M,N) > 1 then

return “N is a composite”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
if (M|N)# MY =Y/2 mod N then

return “/N is composite”;

—_ =
= O

else

—_

return “NN is a prime”;
end if
: end if

—_
v
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Analysis

The algorithm certainly runs in polynomial time.

There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is composite, it
is always correct.

The probability of a false negative is at most one half.

— When the algorithm says the number is a prime, it

may err.

— If the input is composite, then the probability that

the algorithm errs is one half.

The error probability can be reduced but not eliminated.
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The Improved Density Attack for COMPOSITENESS

Withesses to

compositeness of Witnesses to
N via common compositeness of
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Randomized Complexity Classes; RP

e Let NV be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.
e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If z € L, then at least half of the 2P(™) computation
paths of N on z halt with “yes” where n = |z |.

— If z € L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo
TMs is denoted RP (randomized polynomial time).*

2Adleman and Manders (1977).
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Comments on RP
Nondeterministic steps can be seen as fair coin flips.
There are no false positive answers.
The probability of false negatives, 1 — ¢, is at most 0.5.

But any constant between 0 and 1 can replace 0.5.

— By repeating the algorithm k = [ — 10g211—e—‘ times, the

probability of false negatives becomes (1 — ¢€)* < 0.5.

In fact, € can be arbitrarily close to 0 as long as it is of

the order 1/p(n) for some polynomial p(n).
~ g = 0(0) = O0(p(n)).
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Where RP Fits

e P C RP C NP.
— A deterministic TM is like a Monte Carlo TM except

that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with extra demands

on the number of accepting paths.

e COMPOSITENESS € RP; PRIMES € coRP; PRIMES € RP.?

— In fact, PRIMES € P.P

e RP U coRP is another “plausible” notion of efficient

computation.

2Adleman and Huang (1987).
b Agrawal, Kayal, and Saxena (2002).
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/PP? (Zero Probabilistic Polynomial)
e The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false

negatives.

e If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

— A positive answer from the one without false

positives.

— A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)
1: {Suppose L € ZPP.}

2: {N7 has no false positives, and N5 has no false
negatives. }

while true do
if Ni(x) = “yes” then

end if
if No(x) = “no” then

3:
4
5: return “yes”;
6
7
8 return ‘“no”;

9: end if
10: end while
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/PP (concluded)

e The expected running time for the correct answer to

emerge is polynomial.

— The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5.
— Let p(n) be the running time of each run.

— The expected running time for a definite answer is

ZO.5iip(n) = 2p(n).

e Essentially, ZPP is the class of problems that can be

solved without errors in expected polynomial time.
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Et Tu, RP?

: {Suppose L € RP.}
: {N decides L without false positives.}

1

2

3: while true do

4: if N(x) = “yes” then
5: return “yes”;
6

7

8

end if
{But what to do here?}

: end while
e You eventually get a “yes” if x € L.
e But how to get a “no” when xz ¢ L?

e You have to sacrifice either correctness or bounded

running time.
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Large Deviations

Suppose you have a biased coin.

One side has probability 0.5 4+ ¢ to appear and the other
0.5 — €, for some 0 < e < 0.5.

But you do not know which is which.

How to decide which side is the more likely—with high

confidence?

Answer: Flip the coin many times and pick the side that

appeared the most times.

Question: Can you quantify the confidence?
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The Chernoff Bound?®
Theorem 66 (Chernoff (1952)) Suppose x1,x3,...,2,

are independent random wvariables taking the values 1 and 0
with probabilities p and 1 — p, respectively. Let X =Y . | ;.
Then for all 0 <0 <1,

prob[ X > (1+60)pn]| < e=07rn/3

e The probability that the deviate of a binomial

random variable from its expected value
mn

E|X]|=E[) ,_,x;| =pn decreases exponentially with
the deviation.

e The Chernofl bound is asymptotically optimal.

2Herman Chernoff (1923-).
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The Proof

Let t be any positive real number.

Then

prob[ X > (14 0) pn] = prob[e!X > ! +0)pn],

Markov’s inequality (p. 405) generalized to real-valued

random variables says that

prob [e'* > kE[e'* |] < 1/k.

With k = et(H0rn /B[ etX ] we have

prob[ X > (14 0)pn] < et ptX ],

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 465



The Proof (continued)

e Because X =) " , x; and z;’s are independent,
E[e™ ] = (Ble™ )" = [1+p(e' = 1)]"™.
e Substituting, we obtain

prob[ X > (1+0)pn] < e HIP[14p(e —1)]"

t
6—t(1+9) pnepn(e —1)

as (1 4+ a)™ < e for all a > 0.
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The Proof (concluded)

e With the choice of t = In(1 4 ), the above becomes
prob[ X > (1 +6)pn] < ePl0-0+0)In(1+0)]

03 04

e The exponent expands to —% + = — %= 4 - for

6 12
0 <6 <1, which is less than

1 0 I 1
a2l <pR =
+5) < (5245
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Power of the Majority Rule

From prob[ X < (1 —0)pn] < o= pn (prove it):

Corollary 67 If p=(1/2) + € for some 0 < e <1/2, then

prob [sz < n/2] < o€ /2,

i=1
e The textbook’s corollary to Lemma 11.9 seems incorrect.
e Our original problem (p. 463) hence demands ~ 1.4k /¢

independent coin flips to guarantee making an error
with probability at most 2% with the majority rule.
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BPP?* (Bounded Probabilistic Polynomial)

e The class BPP contains all languages for which there is

a precise polynomial-time NTM N such that:
— If x € L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

— If x € L, then at least 3/4 of the computation paths

of N on z lead to “no.”

e N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/47

e The number 3/4 bounds the probability of a right

answer away from 1/2.

e Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.

e In fact, 0.5 plus any inverse polynomial between 1/2 and
1,

1
0.5+ ——
p(n)

can be used.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + .
for:=1,2,....,2k+1 do

Run N on input x;
end for

if “yes” is the majority answer then

44 29

yes g
else

CCnO” ;

end if

1:
2:
3:
4:
5:
6:
T
8:
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Analysis

The running time remains polynomial, being 2k + 1

times N’s running time.

By Corollary 67 (p. 468), the probability of a false

. o 2
answer is at most e € F.

By taking k = [ 2/¢? ], the error probability is at most
1/4.

As with the RP case, € can be any inverse polynomial,

because k remains polynomial in n.
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Probability Amplification for BPP

e Let m be the number of random bits used by a BPP

algorithm.

— By definition, m is polynomial in n.

e With £ = ©(logm) in the majority vote algorithm, we

can lower the error probability to < (3m)~!.
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Aspects of BPP

BPP is the most comprehensive yet plausible notion of

efficient computation.

— If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

— In this aspect, BPP has effectively replaced P.
(RP UcoRP) C (NP U coNP).

(RP U coRP) C BPP.

Whether BPP C (NP U coNP) is unknown.

But it is unlikely that NP C BPP (p. 489).
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coBPP

The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

An algorithm for L € BPP becomes one for L by

reversing the answer.

So L € BPP and BPP C coBPP.

Similarly coBPP C BPP.
Hence BPP = coBPP.
This approach does not work for RP.

It did not work for NP either.
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BPP and coBPP
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“The Good, the Bad, and the Ugly”
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Circuit Complexity

Circuit complexity is based on boolean circuits instead

of Turing machines.

A boolean circuit with n inputs computes a boolean

function of n variables.

By identity true with 1 and false with 0, a boolean

circuit with n inputs accepts certain strings in {0, 1 }™.

To relate circuits with arbitrary languages, we need one

circuit for each possible input length n.
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Formal Definitions
e The size of a circuit is the number of gates in it.

e A family of circuits is an infinite sequence
C = (Cy,Cq,...) of boolean circuits, where C,, has n

boolean inputs.
e [ C {0,1}* has polynomial circuits if there is a family
of circuits C such that:

— The size of C,, is at most p(n) for some fixed

polynomial p.

— For input = € {0,1}*, €|, outputs 1 if and only if
x € L.
x C,, accepts LN {0,1}".
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Exponential Circuits Contain All Languages

e Theorem 14 (p. 153) implies that there are languages

that cannot be solved by circuits of size 2" /(2n).
e But exponential circuits can solve all problems.

Proposition 68 All decision problems (decidable or

otherwise) can be solved by a circuit of size 22,

e We will show that for any language L C {0, 1}*,
LN {0,1}" can be decided by a circuit of size 272,
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The Proof (concluded)
Define boolean function f : {0,1}"™ — {0, 1}, where

1 $1£C2'°'£Un€L,

flrizg - xy,) =
0 ziz0-- 2, & L.

flrixe - xn) = (x1 A f(lxe - xn)) V (mx1 A f(0x2 - - xp)).

The circuit size s(n) for f(xixs---x,) hence satisfies
s(n) =4+ 2s(n—1)

with s(1) = 1.

Solve it to obtain s(n) =5 x 2"~ — 4 < 2n+2,
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Comments

Proposition 68 (p. 480) does not contradict anything we

knew so far about computation theory.

Yes, there are only a finite number of circuits with size
YA

Yes, there are only 2" possible inputs of length n.
Yes, those circuits can solve all problems of length n.

But is there an algorithm to tell which circuit is the

correct one”?
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