Primality Tests

e PRIMES asks if a number IV is a prime.

e The classic algorithm tests if k| N for k =2,3,...,VN.

e But it runs in Q(2"/2) steps, where n = | N | = log, N.
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The Density Attack for PRIMES

. Pick k € {2,..., N — 1} randomly; {Assume N > 2.}
. if k| N then

return “/N is composite”;
. else
. return “N is a prime”;
. end if
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Analysis®

e Suppose N = P(), a product of 2 primes.

e The probability of success is

ooy, P-DHe-1) P+Q-1
N PQ — PO .

e In the case where P =~ (), this probability becomes

L1
P Q VN

e This probability is exponentially small.

aSee also p. 363.
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The Fermat Test for Primality

Fermat’s “little” theorem on p. 365 suggests the following

primality test for any given number p:

. Pick a number a randomly from {1,2,..., N —1};
. if a¥ 7! #4 1 mod N then

return “/N is composite”;

return “N is probably a prime”;
. end if

1
2
3
4: else
5
6
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The Fermat Test for Primality (concluded)

e Unfortunately, there are composite numbers called

Carmichael numbers that will pass the Fermat test
for all a € {1,2,..., N — 1}.

e There are infinitely many Carmichael numbers.?

2 Alford, Granville, and Pomerance (1992).
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Square Roots Modulo a Prime

e Equation 2 = a mod p has at most two (distinct) roots

by Lemma 54 (p. 370).
— The roots are called square roots.

— Numbers a with square roots and ged(a,p) = 1 are

called quadratic residues.

+ They are 1?2 mod p,22 mod p, ..., (p — 1)? mod p.

e We shall show that a number either has two roots or has

none, and testing which one is true is trivial.

e There are no known efficient deterministic algorithms to
find the roots.
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Euler's Test

Lemma 60 (Euler) Let p be an odd prime and
a # 0 mod p.

1. If a'P=1/2 = 1 mod p, then 2 = a mod p has two roots.

2. If aP=D/2 &£ 1 mod p, then aP~1/2 = —1 mod p and

r? = a mod p has no roots.

Let r be a primitive root of p.

By Fermat’s “little” theorem, r(P=1)/2 is a square root of
1, so rP=1/2 = +1 mod p.

But as r is a primitive root, #?=1/2 = 1 mod p.

Hence r?~1/2 = —1 mod p.
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The Proof (continued)

e Suppose a = 1% for some 1 < j < (p—1)/2.

e Then aP~1/2 = yi(P=1) = 1 mod p and its two distinct
roots are 1/, —rd(= pitP=1/2),
— If 77 = —r7 mod p, then 2r7 = 0 mod p, which implies

rJ = 0 mod p, a contradiction.

e As1<j<(p—1)/2, there are (p —1)/2 such a’s.
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The Proof (concluded)

Each such a has 2 distinct square roots.

The square roots of all the a’s are distinct.

— The square roots of different a’s must be different.

Hence the set of square roots is {1,2,...,p — 1}.
— Le., Ulgagp—l{x 22 =amodp} ={1,2,...,p—1}.

If a = r?*1 then it has no roots because all the square

roots have been taken.

aP=1/2 = [p(P=1)/212/+1 — (_1)2/+1 = —_1 mod p.
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The Legendre Symbol* and Quadratic Residuacity Test

By Lemma 60 (p. 426) a»~Y/2 mod p = +1 for
a # 0 mod p.
For odd prime p, define the Legendre symbol (a|p) as

’

0 if p|a,

(a|lp)=1< 1 if a is a quadratic residue modulo p,

| —1 if a is a quadratic nonresidue modulo p.

Euler’s test implies a?~1/2 = (a | p) mod p for any odd

prime p and any integer a.

e Note that (ablp) = (a|p)(b|p).

& Andrien-Marie Legendre (1752—-1833).
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Gauss's Lemma

Lemma 61 (Gauss) Let p and q be two odd primes. Then
(qlp) = (=1)™, where m is the number of residues in
R={igmodp:1<i<(p—1)/2} that are greater than

(p—1)/2.
e All residues in R are distinct.
— If ig = jq mod p, then p|(j — 1) q or plq.

e No two elements of R add up to p.

— If ig + jq = 0 mod p, then p|(i + j) or plq.

— But neither is possible.
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The Proof (continued)

e Consider the set R’ of residues that result from R if we

replace each of the m elements a € R such that
a>(p—1)/2 by p— a.

— This is equivalent to performing —a mod p.
e All residues in R’ are now at most (p — 1)/2.

e In fact, R ={1,2,...,(p—1)/2} (see illustration next
page).
— Otherwise, two elements of R would add up to p,

which has been shown to be impossible.
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p="7and g = 5.
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The Proof (concluded)

Alternatively, R' = {+igmod p:1<i < (p—1)/2},

where exactly m of the elements have the minus sign.

Take the product of all elements in the two

representations of R'.
So [(p—1)/2]' = (=1)™qP=/2[(p — 1) /2]! mod p.

Because ged([(p — 1)/2]!,p) = 1, the above implies

1= (—1)"¢»"1/2 mod p.
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Legendre's Law of Quadratic Reciprocity®
e Let p and ¢ be two odd primes.

e The next result says their Legendre symbols are distinct

if and only if both numbers are 3 mod 4.

Lemma 62 (Legendre (1785), Gauss)

(pla)(qlp) = (1) =2

2First stated by Euler in 1751. Legendre (1785) did not give a correct
proof. Gauss proved the theorem when he was 19. He gave at least 6

different proofs during his life. The 152nd proof appeared in 1963.
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The Proof (continued)

e Sum the elements of R’ in the previous proof in mod2.
e On one hand, this is just 37"/ mod 2.

e On the other hand, the sum equals

(p—1)/2 ;
Z (qi—p{—qJ>+mpmod2
p

i=1
(p—1)/2 (p—1)/2

q Z 1 —p Z { J + mp mod 2.

1=1

— Signs are irrelevant under mod?2.

— m is as in Lemma 61 (p. 430).
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The Proof (continued)

e Ignore odd multipliers to make the sum equal

(p—1)/2 (p—1)/2

Z 1 — Z {ﬂJ + m mod 2.
i=1 i=1 p

e Ilquate the above with Z(p_ )2 i mod 2 to obtain

ﬂJ mod 2.

p

ney

1=1

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436



The Proof (concluded)

—1)/2 1 . . .
Zgil / [ 1] is the number of integral points under the

liney = (¢/p)xfor1 <z < (p—1)/2.
Gauss’s lemma (p. 430) says (¢q|p) = (—1)™.
Repeat the proof with p and ¢ reversed.

So (plg) = (—1)™, where m/ is the number of integral
points above the line y = (¢/p)x for 1 <y < (¢ —1)/2.

As a result, (plg)(qlp) = (=1)™™".

But m + m’ is the total number of integral points in the

p—1 q—1 . - p—1 g—1
=5— X “5= rectangle, which is == 5-.
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Eisenstein’s Rectangle

p=11and ¢g=7.
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The Jacobi Symbol®

The Legendre symbol only works for odd prime moduli.

The Jacobi symbol (a|m) extends it to cases where m

1s not prime.
Let m = pipo - - - pr. be the prime factorization of m.

When m > 1 is odd and ged(a, m) = 1, then

k

(alm) = [ [(alp2).

1=1

e Define (a|1) = 1.

2Carl Jacobi (1804-1851).
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for

arguments for which it is defined.
1. (ab|m) = (a|m)(b|m).
2. (a|mims) = (a|mq)(a|ms).
3. If a = b mod m, then (a|m) = (b|m).
4. (=1|m) = (=1)m=D/2 (by Lemma 61 on p. 430).

5. (2|m) = (=1)™ ~1/8 (by Lemma 61 on p. 430).

6. If ¢« and m are both odd, then
(alm)(m]a) = (=1)te-Dim=0/4,
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Calculation of (2200[999)

Similar to the Euclidean algorithm and does not require

factorization.

(202]999) = (—1)©22°=1/8(101]999)
(—1)"*7°°(101]999) = (101]999)
(—1)(100998)/4(999[101) = (—1)***°°(999|101)
(

(-1

999[101) = (90[101) = (—1)T°**=D/8(45101)
1)'?™(45(101) = —(45]101)

—(—1)#HI00/4 (107 |45) = —(101]45) = —(11]45)

— (=)W (45111) = —(45]11)

—(1]11) = —(11]1) = —
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 63 The group of set ®(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,
pk, or ka for some nonnegative integer k and and odd

prime p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Test?®

Lemma 64 If (M|N) =MW =Y/2mod N for all
M € ®(N), then N is prime. (Assume N is odd.)

e Assume N = mp, where p is an odd prime, gcd(m, p) = 1,

and m > 1 (not necessarily prime).
o Let r € ®(p) such that (r|p) = —1.

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M = r mod p,
M = 1modm.

@Mr. Clement Hsiao (R88526067) pointed out that the textbook’s
proof in Lemma 11.8 is incorrect while he was a senior in January 1999.
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The Proof (continued)

e By the hypothesis,
MW=U/Z — (M |N) = (M|p)(M|m)=—1mod N.

e Hence
MW-1/2 — _1 mod m.

e But because M =1 mod m,
MWN=1/2 =1 mod m,

a contradiction.
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The Proof (continued)

e Second, assume that N = p®, where p is an odd prime
and a > 2.

e By Theorem 63 (p. 442), there exists a primitive root r

modulo p?.

e From the assumption,

2
MV = [MW—W?} — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e Asr € ®(N) (prove it), we have

rN~1 — 1 mod N.

e As r’s exponent modulo N = p® is ¢(N)

pa_1<p o 1) ‘N o ]-7

which implies that p| N — 1.

e But this is impossible given that p | N.
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The Proof (continued)

Third, assume that N = mp®, where p is an odd prime,
ged(m,p) =1, m > 1 (not necessarily prime), and a is

even.
The proof mimics that of the second case.

By Theorem 63 (p. 442), there exists a primitive root r

modulo p?.

From the assumption,

2
MV = [MW—W?} — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e In particular,
MYN~1 =1 mod p® (6)

for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M r mod p°,
M 1 mod m.

e Because M = r mod p® and Eq. (6),

rV =1 = 1 mod p?.
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The Proof (concluded)

e As r’s exponent modulo N = p® is ¢(N)
pa_1<p o 1) ‘N R ]-7
which implies that p| N — 1.

e But this is impossible given that p | N.
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The Number of Witnesses to Compositeness

Theorem 65 (Solovay and Strassen (1977)) If N is an
odd composite, then (M|N)# MWN=1/2 mod N for at least
half of M € ®(N).

e By Lemma 64 (p. 443) there is at least one a € ®(N)

such that (a|N) # aN=1/2 mod N.

o Let B=1{by,ba,...,bi} C ®(N) be the set of all distinct
residues such that (b;|N) = bZ(-N_l)/2 mod N.

o Let aB={ab;mod N :i=1,2,... k}.
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The Proof (concluded)

e |aB|=k.
— ab; = ab; mod N implies Nl|a(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b;|.
e aBN B = () because

(aby) V12 = oWV TDRINTDZ oL (0] N (bi|N) = (abi|N).

e Combining the above two results, we know
| B|

SV < 0.5.
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if N is even but N # 2 then
return “N is composite”;
else if N = 2 then
return “N is a prime”;
end if
Pick M € {2,3,..., N — 1} randomly;
if gcd(M, N) > 1 then

return “NV is a composite”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
if (M|N)# MY ~Y/2 mod N then

return “NN is composite”;

—_ =
= O

else

_ =

return “/N is a prime”;
end if
: end if

N
A
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Analysis

The algorithm certainly runs in polynomial time.

There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is composite, it
is always correct.

The probability of a false negative is at most one half.

— When the algorithm says the number is a prime, it

may err.

— If the input is composite, then the probability that
the algorithm errs is one half.

The error probability can be reduced but not eliminated.
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The Improved Density Attack for COMPOSITENESS

Witnesses to

compositeness of Witnesses to

N via common compositeness of
factor N via Jacobi
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Randomized Complexity Classes; RP

e Let NV be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.
e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If x € L, then at least half of the 2P(™) computation
paths of N on z halt with “yes” where n = |x|.

— If x € L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo
TMs is denoted RP (randomized polynomial time).?

2 Adleman and Manders (1977).
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Comments on RP
Nondeterministic steps can be seen as fair coin flips.
There are no false positive answers.
The probability of false negatives, 1 — ¢, is at most 0.5.

But any constant between 0 and 1 can replace 0.5.

— By repeating the algorithm k = [— | times, the

log2 1—e
probability of false negatives becomes (1 — €)* < 0.5.

In fact, € can be arbitrarily close to 0 as long as it is of

the order 1/p(n) for some polynomial p(n).
a log21 € O( ) O(p(n))
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Where RP Fits

e P CRP C NP.

— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.

e COMPOSITENESS € RP; PRIMES € coRP; PRIMES € RP.?

— In fact, PRIMES € P.P

e RP U coRP is another “plausible” notion of efficient

computation.

a2Adleman and Huang (1987).
bAgrawal, Kayal, and Saxena (2002).
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/PP? (Zero Probabilistic Polynomial)
e The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false

negatives.

o If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

— A positive answer from the one without false

positives.

— A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L € ZPP.}
2: {IN7 has no false positives, and N, has no false
negatives. }
3: while true do
if Ni(z) = “yes” then

44 .
return “yes”;

if No(z) = “no” then

4
5
6: end if
7
8 return “no’”;

9: end if
10: end while
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/PP (concluded)

e The expected running time for the correct answer to

emerge is polynomial.

— The probability that a run of the 2 algorithms does
not generate a definite answer is 0.5.

— Let p(n) be the running time of each run.

— The expected running time for a definite answer is

ZO.E’)iip(n) = 2p(n).

e Essentially, ZPP is the class of problems that can be

solved without errors in expected polynomial time.
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Et Tu, RP?
: {Suppose L € RP.}
: {V decides L without false positives.}

1

2

3: while true do

4: if N(x) = “yes” then
5: return “yes”;
6

7

8

end if
{But what to do here?}

: end while
e You eventually get a “yes” if x € L.
e But how to get a “no” when z ¢ L?

e You have to sacrifice either correctness or bounded

running time.
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Large Deviations

Suppose you have a biased coin.

One side has probability 0.5 4+ ¢ to appear and the other
0.5 — €, for some 0 < e < 0.5.

But you do not know which is which.

How to decide which side is the more likely—with high

confidence?

Answer: Flip the coin many times and pick the side that

appeared the most times.

Question: Can you quantify the confidence?
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The Chernoff Bound®
Theorem 66 (Chernoff (1952)) Suppose x1,z2,...,Ty

are independent random vartables taking the values 1 and 0
with probabilities p and 1 — p, respectively. Let X =Y . | ;.
Then for all0 <0 <1,

prob| X > (1 +6)pn] < e=07rn/3,

e The probability that the deviate of a binomial

random variable from its expected value
mn

E|X|=E[) ._,x;] = pn decreases exponentially with
the deviation.

e The Chernoff bound is asymptotically optimal.

2Herman Chernoff (1923-).
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The Proof

Let ¢t be any positive real number.

Then

prob[ X > (1 + ) pn] = prob[e!* > 1+ rn ],

Markov’s inequality (p. 405) generalized to real-valued

random variables says that

prob [e'* > kE[e'* |] < 1/k.

With k = et(H0r /B[ etX ] we have

prob[ X > (14 0)pn] < et ptX ],
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The Proof (continued)

e Because X =) " , x; and z;’s are independent,
E[e™ ] = (E[e™])" = [1+p(e' = 1]
e Substituting, we obtain

prob[ X > (1 +0)pn] < e "I [14ple’ —1)]"
e—t(l-i—@) pnepn(et—l)

as (1 4+ a)™ < e for all a > 0.
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The Proof (concluded)

e With the choice of ¢t = In(1 + 0), the above becomes
prob[ X > (1 +6)pn] < P-4+ In(1+0)]

03 04

e The exponent expands to —% + = — 3 4+ --- for

6 12
0 <6 <1, which is less than

1 6
<@’ -+ 2
_9(2+6

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 466



Power of the Majority Rule

From prob[ X < (1 —-0)pn]| < e~ (prove it):

Corollary 67 If p=(1/2) 4+ € for some 0 < e < 1/2, then

prob [sz < n/2] < e—€ /2

i=1
e The textbook’s corollary to Lemma 11.9 seems incorrect.
e Our original problem (p. 462) hence demands ~~ 1.4k /e”

independent coin flips to guarantee making an error
with probability at most 2% with the majority rule.
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BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages for which there is

a precise polynomial-time NTM N such that:
— If x € L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

— If x € L, then at least 3/4 of the computation paths

of N on z lead to “no.”

e N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/47
e The number 3/4 bounds the probability of a right

answer away from 1/2.

e Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.

e In fact, 0.5 plus any inverse polynomial between 1/2 and
1,

1
0.5+ ——
p(n)

can be used.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + e.
for:=1,2,...,2k+1do

Run N on input x;
end for

if “yes” is the majority answer then

44 7

yes
else

C(nO” ;

end if

1:
2:
3:
4:
5:
6:
T
8:
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Analysis

The running time remains polynomial, being 2k + 1

times /NV’s running time.

By Corollary 67 (p. 467), the probability of a false

. . 2
answer is at most e € F.

By taking k = [ 2/€? ], the error probability is at most
1/4.

As with the RP case, € can be any inverse polynomial,

because k£ remains polynomial in n.
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Probability Amplification for BPP

e Let m be the number of random bits used by a BPP

algorithm.

— By definition, m is polynomial in n.

e With k£ = O(logm) in the majority vote algorithm, we

can lower the error probability to < (3m)~1.
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Aspects of BPP

BPP is the most comprehensive yet plausible notion of

efficient computation.

— If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

— In this aspect, BPP has effectively replaced P.
(RP UcoRP) C (NP U coNP).

(RP UcoRP) C BPP.
Whether BPP C (NP U coNP) is unknown.

But it is unlikely that NP C BPP (p. 487).
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coBPP

The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

An algorithm for L € BPP becomes one for L by

reversing the answer.

So L € BPP and BPP C coBPP.

Similarly coBPP C BPP.
Hence BPP = coBPP.
This approach does not work for RP.

It did not work for NP either.
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BPP and coBPP
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“The Good, the Bad, and the Ugly”
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Circuit Complexity

Circuit complexity is based on boolean circuits instead

of Turing machines.

A boolean circuit with n inputs computes a boolean

function of n variables.

By identify true with 1 and false with 0, a boolean

circuit with n inputs accepts certain strings in {0, 1 }".

To relate circuits with arbitrary languages, we need one
circuit for each possible input length n.
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Formal Definitions
e The size of a circuit is the number of gates in it.

e A family of circuits is an infinite sequence
C = (Cy,C4,...) of boolean circuits, where C,, has n

boolean inputs.
e [ C {0,1}* has polynomial circuits if there is a family
of circuits C such that:

— The size of C,, is at most p(n) for some fixed

polynomial p.

— For input = € {0,1}*, C|,| outputs 1 if and only if
x € L.
x C), accepts L N {0,1}".
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Exponential Circuits Contain All Languages

e Theorem 14 (p. 153) implies that there are languages

that cannot be solved by circuits of size 2" /(2n).
e But exponential circuits can solve all problems.

Proposition 68 All decision problems (decidable or

otherwise) can be solved by a circuit of size 272,

e We will show that for any language L C {0,1}%,
LN {0,1}" can be decided by a circuit of size 272,
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The Proof (concluded)
Define boolean function f : {0,1}"™ — {0, 1}, where

1 xix29- -2, € L,

fxime - an) =
0 ziz2-- -2, & L.

flrixe - xn) = (x1 A f(lxe - xn)) V (mx1 A f(0x2 - - xp)).

The circuit size s(n) for f(x1x2---x,) hence satisfies
s(n) =44 2s(n—1)

with s(1) = 1.

Solve it to obtain s(n) =5 x 2"~ — 4 < 2n+2,
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The Circuit Complexity of P

Proposition 69 All languages in P have polynomaial

circults.

e Let L € P be decided by a TM in time p(n).

e By Corollary 27 (p. 239), there is a circuit with
O(p(n)?) gates that accepts L N {0,1}".

e The size of the circuit depends only on L and the length
of the input.

e The size of the circuit is polynomial in n.
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Languages That Polynomial Circuits Accept

e Do polynomial circuits accept only languages in P?
e There are undecidable languages that have polynomial
circuits.
Let L C {0,1}* be an undecidable language.
Let U = {1™ : the binary expansion of n is in L}.?
U is also undecidable.

U N{1}" can be accepted by C,, that is trivially true
if 1™ € U and trivially false if 1™ ¢ U.

The family of circuits (Cy, C1,...) is polynomial in
size.

@ Assume n’s leading bit is always 1 without loss of generality.
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