
Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z
+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself, say

si = sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and mℓ = 1 mod p, then k|ℓ.

– Otherwise, ℓ = qk + a for 0 < a < k, and

mℓ = mqk+a = ma = 1 mod p, a contradiction.

Lemma 54 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 370

Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide

p − 1.

• A primitive root of p is thus a number with exponent

p − 1.

• Let R(k) denote the total number of residues in Φ(p)

that have exponent k.

• We already knew that R(k) = 0 for k 6 |(p − 1).

• So
∑

k|(p−1) R(k) = p − 1 as every number has an

exponent.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 371

Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,

R(k) ≤ k, by Lemma 54 on p. 370.

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are all distinct modulo p.

– Otherwise, si = sj mod p with i < j and s is of

exponent j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they are all the solutions of xk = 1 mod p.

• But do all of them have exponent k (i.e., R(k) = k)?

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 372

Size of R(k) (continued)

• And if not (i.e., R(k) < k), how many of them do?

• Suppose ℓ < k and ℓ 6∈ Φ(k) with gcd(ℓ, k) = d > 1.

• Then

(sℓ)k/d = (sk)ℓ/d = 1 mod p.

• Therefore, sℓ has exponent at most k/d, which is less

than k.

• We conclude that

R(k) ≤ φ(k).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 373

Size of R(k) (concluded)

• Because all p − 1 residues have an exponent,

p − 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

φ(k) = p − 1

by Lemma 50 on p. 359.

• Hence

R(k) =







φ(k) when k|(p − 1)

0 otherwise

• In particular, R(p− 1) = φ(p− 1) > 0, and p has at least

one primitive root.

• This proves one direction of Theorem 46 (p. 351).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 374

A Few Calculations

• Let p = 13.

• From p. 367, we know φ(p − 1) = 4.

• Hence R(12) = 4.

• And there are 4 primitives roots of p.

• As Φ(p − 1) = {1, 5, 7, 11}, the primitive roots are

g1, g5, g7, g11 for any primitive root g.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 375

The Other Direction of Theorem 46 (p. 351)

• We must show p is a prime only if there is a number r

(called primitive root) such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q 6= 1 mod p for all prime divisors q of p − 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 376

The Proof (concluded)

• rφ(p) = 1 mod p by the Fermat-Euler theorem (p. 367).

• Because p is not a prime, φ(p) < p − 1.

• Let k be the smallest integer such that rk = 1 mod p.

• As k ≤ φ(p), k < p − 1.

• Let q be a prime divisor of (p − 1)/k > 1.

• Then k|(p − 1)/q.

• Therefore, by virtue of the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 377

Function Problems

• Decisions problem are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 378

Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the

corresponding function problems.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 379

fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 380

An Algorithm for fsat Using sat
1: t := ǫ;

2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[xi = true] ∈ sat then

5: t := t ∪ { xi = true };

6: φ := φ[xi = true];

7: else

8: t := t ∪ { xi = false };

9: φ := φ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 381

Analysis

• There are ≤ n + 1 calls to the algorithm for sat.a

• Shorter boolean expressions than φ are used in each call

to the algorithm for sat.

• So if sat can be solved in polynomial time, so can fsat.

• Hence sat and fsat are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 382

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• The tsp asks for a tour with the shortest total distance

(not just the shortest total distance, as earlier).

– The shortest total distance must be at most 2| x |,

where x is the input.

• tsp (d) asks if there is a tour with a total distance at

most B.

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 383

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2|x |] by calling

tsp (d) to obtain the shortest distance C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to old value; {Edge [i, j] is critical.}

6: end if

7: end for

8: return the tour with edges whose dij ≤ C;

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 384

Analysis

• An edge that is not on any optimal tour will be

eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will

also be eliminated.

• So the algorithm ends with n edges which are not

eliminated (why?).

• There are O(|x |+ n2) calls to the algorithm for tsp (d).

• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 385

Randomized Computation

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 386

I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 387

Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.

• Are randomized algorithms algorithms?
aRabin (1976); Solovay and Strassen (1977).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 388

“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 389

Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V, E).

– U = {u1, u2, . . . , un}.

– V = {v1, v2, . . . , vn}.

– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all ui ∈ U .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 390

A Perfect Matching

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 391

Symbolic Determinants

• Given a bipartite graph G, construct the n × n matrix

AG whose (i, j)th entry AG
ij is a variable xij if

(ui, vj) ∈ E and zero otherwise.

• The determinant of AG is

det(AG) =
∑

π

sgn(π)
n

∏

i=1

AG
i,π(i). (5)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 392

Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 AG
i,π(i), note the following:

– Each summand corresponds to a possible prefect

matching π.

– As all variables appear only once, all of these

summands are different monomials and will not

cancel.

• It is essentially an exhaustive enumeration.

Proposition 55 (Edmonds (1967)) G has a perfect

matching if and only if det(AG) is not identically zero.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 393

A Perfect Matching in a Bipartite Graph

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 394

The Perfect Matching in the Determinant

• The matrix is

AG =





















0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55





















.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55, each denoting a

perfect matching.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 395

How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• There are exponentially many terms in det(AG).

• Expanding the determinant polynomial is not feasible.

– Too many terms.

• Observation: If det(AG) is identically zero, then it

remains zero if we substitute arbitrary integers for the

variables x11, . . . , xnn.

• What is the likelihood of obtaining a zero when det(AG)

is not identically zero?

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 396

Number of Roots of a Polynomial

Lemma 56 (Schwartz (1980)) Let p(x1, x2, . . . , xm) 6≡ 0

be a polynomial in m variables each of degree at most d. Let

M ∈ Z
+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ {0, 1, . . . , M − 1}m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 397

Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
.

• So suppose p(x1, x2, . . . , xm) 6≡ 0.

• Then a random

(x1, x2, . . . , xn) ∈ { 0, 1, . . . , M − 1 }n

has a probability of ≤ md/M of being a root of p.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 398

Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) 6≡ 0.

1: Choose i1, . . . , im from {0, 1, . . . , M − 1} randomly;

2: if p(i1, i2, . . . , im) 6= 0 then

3: return “p is not identically zero”;

4: else

5: return “p is identically zero”;

6: end if

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 399

A Randomized Bipartite Perfect Matching Algorithma

We now return to the original problem of bipartite perfect

matching.

1: Choose n2 integers i11, . . . , inn from {0, 1, . . . , b − 1}

randomly;

1: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;

2: if det(AG(i11, . . . , inn)) 6= 0 then

3: return “G has a perfect matching”;

4: else

5: return “G has no perfect matchings”;

6: end if

aLovász (1979).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 400

Analysis

• Pick b = 2n2.

• If G has no perfect matchings, the algorithm will always

be correct.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with

probability at most n2d/b = 0.5 because d = 1.

– Run the algorithm independently k times and output

“G has no perfect matchings” if they all say no.

– The error probability is now reduced to at most 2−k.

• Is there an (i11, . . . , inn) that will always give correct

answers for all bipartite graphs of 2n nodes?a

aThanks to a lively class discussion on November 24, 2004.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 401

Perfect Matching for General Graphs

• Page 390 is about bipartite perfect matching

• Now we are given a graph G = (V, E).

– V = {v1, v2, . . . , v2n}.

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , 2n} such that

(vi, vπ(i)) ∈ E

for all vi ∈ V .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 402

The Tutte Matrixa

• Given a graph G = (V, E), construct the 2n × 2n Tutte

matrix T G such that

T G
ij =















xij if (vi, vj) ∈ E and i < j,

−xij if (vi, vj) ∈ E and i > j,

0 othersie.

• The Tutte matrix is a skew-symmetric symbolic matrix.

• Similar to Proposition 55 (p. 393):

Proposition 57 G has a perfect matching if and only if

det(T G) is not identically zero.

aWilliam Thomas Tutte (1917–2002).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 403

Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is

called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is

always correct (no false positives).

– If the algorithm answers in the negative, then it may

make an error (false negative).

• The algorithm makes a false negative with probability

≤ 0.5.

• This probability is not over the space of all graphs or

determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.
aMetropolis and Ulam (1949).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 404

The Markov Inequalitya

Lemma 58 Let x be a random variable taking nonnegative

integer values. Then for any k > 0,

prob[x ≥ kE[x]] ≤ 1/k.

• Let pi denote the probability that x = i.

E[x] =
∑

i

ipi

=
∑

i<kE[x]

ipi +
∑

i≥kE[x]

ipi

≥ kE[x] × prob[x ≥ kE[x]].

aAndrei Andreyevich Markov (1856–1922).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 405

An Application of Markov’s Inequality

• Algorithm C runs in expected time T (n) and always

gives the right answer.

• Consider an algorithm that runs C for time kT (n) and

rejects the input if C does not stop within the time

bound.

• By Markov’s inequality, this new algorithm runs in time

kT (n) and gives the wrong answer with probability

≤ 1/k.

• By running this algorithm m times, we reduce the error

probability to ≤ k−m.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 406

An Application of Markov’s Inequality (concluded)

• Suppose, instead, we run the algorithm for the same

running time mkT (n) once and rejects the input if it

does not stop within the time bound.

• By Markov’s inequality, this new algorithm gives the

wrong answer with probability ≤ 1/(mk).

• This is a far cry from the previous algorithm’s error

probability of ≤ k−m.

• The loss comes from the fact that Markov’s inequality

does not take advantage of any specific feature of the

random variable.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 407

fsat for k-sat Formulas (p. 380)

• Let φ(x1, x2, . . . , xn) be a k-sat formula.

• If φ is satisfiable, then return a satisfying truth

assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this

problem.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 408

A Random Walk Algorithm for φ in CNF Form

1: Start with an arbitrary truth assignment T ;

2: for i = 1, 2, . . . , r do

3: if T |= φ then

4: return “φ is satisfiable with T”;

5: else

6: Let c be an unsatisfiable clause in φ under T ; {All

of its literals are false under T .}

7: Pick any x of these literals at random;

8: Modify T to make x true;

9: end if

10: end for

11: return “φ is unsatisfiable”;

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 409

3sat vs. 2sat Again

• Note that if φ is unsatisfiable, the algorithm will not

refute it.

• The random walk algorithm needs expected exponential

time for 3sat.

– In fact, it runs in expected O((1.333 · · · + ǫ)n) time

with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art is expected O(1.322n) time for 3sat

and expected O(1.474n) time for 4sat.c

aUse this setting per run of the algorithm.
bSchöning (1999).
cKwama and Tamaki (2004); Rolf (2006).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 410

Random Walk Works for 2sata

Theorem 59 Suppose the random walk algorithm with

r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= φ.

• Let t(i) denote the expected number of repetitions of the

flipping step until a satisfying truth assignment is found

if our starting T differs from T̂ in i values.

– Their Hamming distance is i.

aPapadimitriou (1991).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 411

The Proof

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= φ.

• If T 6= T̂ or T is not equal to any other satisfying truth

assignment, then we need to flip at least once.

• We flip to pick among the 2 literals of a clause not

satisfied by the present T .

• At least one of the 2 literals is true under T̂ , because T̂

satisfies all clauses.

• So we have at least 0.5 chance of moving closer to T̂ .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 412

The Proof (continued)

• Thus

t(i) ≤
t(i − 1) + t(i + 1)

2
+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ

from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n − 1) + 1

because at i = n, we can only decrease i.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 413

The Proof (continued)

• As we are only interested in upper bounds, we solve

x(0) = 0

x(n) = x(n − 1) + 1

x(i) =
x(i − 1) + x(i + 1)

2
+ 1, 0 < i < n

• This is one-dimensional random walk with a reflecting

and an absorbing barrier.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 414

The Proof (continued)

• Add the equations up to obtain

x(1) + x(2) + · · · + x(n)

=
x(0) + x(1) + 2x(2) + · · · + 2x(n − 2) + x(n − 1) + x(n)

2
+n + x(n − 1).

• Simplify to yield

x(1) + x(n) − x(n − 1)

2
= n.

• As x(n) − x(n − 1) = 1, we have

x(1) = 2n − 1.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 415

The Proof (continued)

• Iteratively, we obtain

x(2) = 4n − 4,

...

x(i) = 2in − i2.

• The worst case happens when i = n, in which case

x(n) = n2.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 416

The Proof (concluded)

• We therefore reach the conclusion that

t(i) ≤ x(i) ≤ x(n) = n2.

• So the expected number of steps is at most n2.

• The algorithm picks a running time 2n2.

• This amounts to invoking the Markov inequality (p. 405)

with k = 2, with the consequence of having a probability

of 0.5.

• The proof does not yield a polynomial bound for 3sat.a

aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8,

2006.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 417

Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

≤ (2m)−1 by Markov’s inequality.

• Alternatively, with the same running time, we can run

the “r = 2n2” algorithm m times.

• But the error probability is reduced to ≤ 2−m!

• Again, the gain comes from the fact that Markov’s

inequality does not take advantage of any specific

feature of the random variable.

• The gain also comes from the fact that the two

algorithms are different.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 418

How about Random CNF?

• Select m clauses independently and uniformly from the

set of all possible disjunctions of k distinct,

non-complementary literals with n boolean variables.

• Let m = cn.

• The formula is satisfiable with probability approaching 1

as n → ∞ if c < ck for some ck < 2k ln 2 − O(1).

• The formula is unsatisfiable with probability

approaching 1 as n → ∞ if c > ck for some

ck > 2k ln 2 − O(k).

• The above bounds are not tight yet.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 419

