Exponents

- The **exponent** of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that $m^k = 1 \mod p$.
- Every residue $s \in \Phi(p)$ has an exponent.
 - $-1, s, s^2, s^3, \ldots$ eventually repeats itself, say $s^i = s^j \mod p$, which means $s^{j-i} = 1 \mod p$.
- If the exponent of m is k and $m^{\ell} = 1 \mod p$, then $k|\ell$.
 - Otherwise, $\ell = qk + a$ for 0 < a < k, and $m^{\ell} = m^{qk+a} = m^a = 1 \mod p$, a contradiction.

Lemma 54 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p)$ that have exponent k.
- We already knew that R(k) = 0 for $k \not | (p-1)$.
- So $\sum_{k|(p-1)} R(k) = p-1$ as every number has an exponent.

Size of R(k)

- Any $a \in \Phi(p)$ of exponent k satisfies $x^k = 1 \mod p$.
- Hence there are at most k residues of exponent k, i.e., $R(k) \le k$, by Lemma 54 on p. 370.
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are all distinct modulo p.
 - Otherwise, $s^i = s^j \mod p$ with i < j and s is of exponent j i < k, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they are all the solutions of $x^k = 1 \mod p$.
- But do all of them have exponent k (i.e., R(k) = k)?

Size of R(k) (continued)

- And if not (i.e., R(k) < k), how many of them do?
- Suppose $\ell < k$ and $\ell \notin \Phi(k)$ with $gcd(\ell, k) = d > 1$.
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore, s^{ℓ} has exponent at most k/d, which is less than k.
- We conclude that

$$R(k) \le \phi(k)$$
.

Size of R(k) (concluded)

• Because all p-1 residues have an exponent,

$$p - 1 = \sum_{k|(p-1)} R(k) \le \sum_{k|(p-1)} \phi(k) = p - 1$$

by Lemma 50 on p. 359.

• Hence

$$R(k) = \begin{cases} \phi(k) & \text{when } k | (p-1) \\ 0 & \text{otherwise} \end{cases}$$

- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 46 (p. 351).

A Few Calculations

- Let p = 13.
- From p. 367, we know $\phi(p-1) = 4$.
- Hence R(12) = 4.
- And there are 4 primitives roots of p.
- As $\Phi(p-1) = \{1, 5, 7, 11\}$, the primitive roots are g^1, g^5, g^7, g^{11} for any primitive root g.

The Other Direction of Theorem 46 (p. 351)

- We must show p is a prime only if there is a number r (called primitive root) such that
 - 1. $r^{p-1} = 1 \mod p$, and
 - 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1} = 1 \mod p$ (note $\gcd(r, p) = 1$).
- We will show that the 2nd condition must be violated.

The Proof (concluded)

- $r^{\phi(p)} = 1 \mod p$ by the Fernat-Euler theorem (p. 367).
- Because p is not a prime, $\phi(p) .$
- Let k be the smallest integer such that $r^k = 1 \mod p$.
- As $k \le \phi(p), k .$
- Let q be a prime divisor of (p-1)/k > 1.
- Then k|(p-1)/q.
- Therefore, by virtue of the definition of k,

$$r^{(p-1)/q} = 1 \bmod p.$$

• But this violates the 2nd condition.

Function Problems

- Decisions problem are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP
 (D) is in P.
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.

An Algorithm for FSAT Using SAT

```
1: t := \epsilon;
 2: if \phi \in SAT then
       for i = 1, 2, ..., n do
      if \phi[x_i = \mathtt{true}] \in \mathtt{SAT} then
     t := t \cup \{ x_i = \mathtt{true} \};
      \phi := \phi[x_i = \mathtt{true}];
     else
     t := t \cup \{ x_i = \mathtt{false} \};
        \phi := \phi[x_i = \mathtt{false}];
      end if
10:
11:
       end for
12:
       return t;
13: else
14:
       return "no";
15: end if
```

Analysis

- There are $\leq n+1$ calls to the algorithm for SAT.^a
- Shorter boolean expressions than ϕ are used in each call to the algorithm for SAT.
- So if sat can be solved in polynomial time, so can fsat.
- Hence SAT and FSAT are equally hard (or easy).

^aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

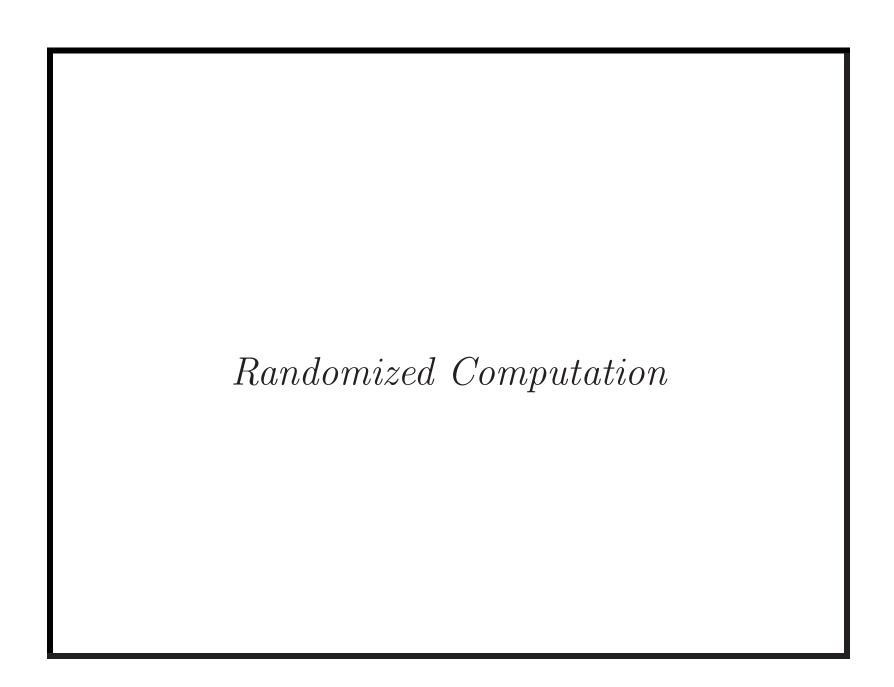
- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- The TSP asks for a tour with the shortest total distance (not just the shortest total distance, as earlier).
 - The shortest total distance must be at most $2^{|x|}$, where x is the input.
- TSP (D) asks if there is a tour with a total distance at most B.
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- 1: Perform a binary search over interval $[0, 2^{|x|}]$ by calling TSP (D) to obtain the shortest distance C;
- 2: **for** $i, j = 1, 2, \dots, n$ **do**
- 3: Call TSP (D) with B = C and $d_{ij} = C + 1$;
- 4: if "no" then
- 5: Restore d_{ij} to old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its d_{ij} set to C+1.
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- There are $O(|x|+n^2)$ calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).



I know that half my advertising works,

I just don't know which half.

— John Wanamaker

I know that half my advertising is a waste of money,
I just don't know which half!

— McGraw-Hill ad.

Randomized Algorithms^a

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- There are problems where randomization is necessary.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithm for maximal independent set.
- Are randomized algorithms algorithms?

^aRabin (1976); Solovay and Strassen (1977).

"Four Most Important Randomized Algorithms" a

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).

^bRabin (1976); Solovay and Strassen (1977).

^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).

^dSchwartz (1980); Zippel (1979).

^eSinclair and Jerrum (1989).

Bipartite Perfect Matching

• We are given a **bipartite graph** G = (U, V, E).

$$- U = \{u_1, u_2, \dots, u_n\}.$$

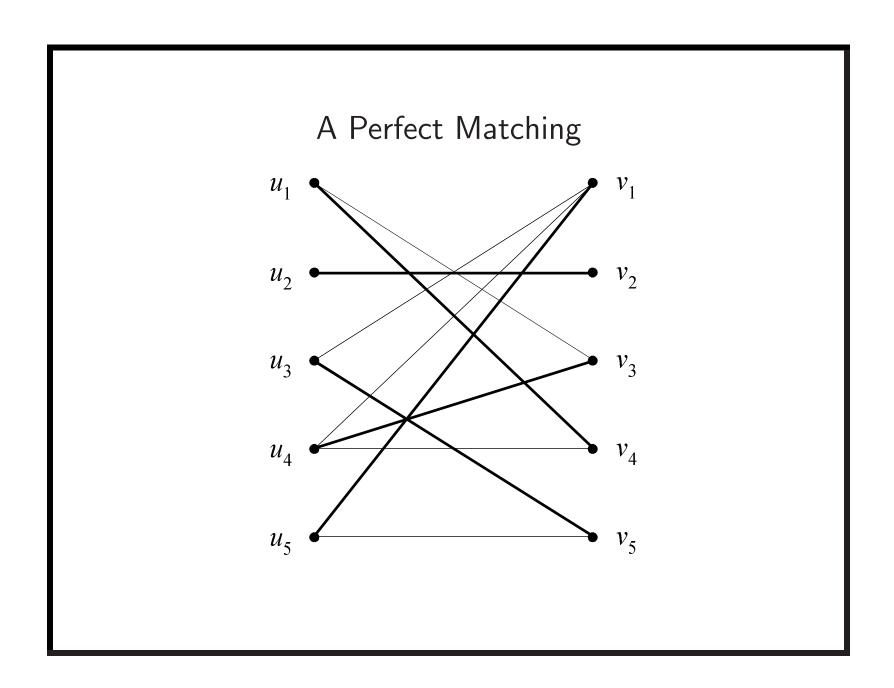
$$-V = \{v_1, v_2, \dots, v_n\}.$$

$$-E \subseteq U \times V.$$

- We are asked if there is a **perfect matching**.
 - A permutation π of $\{1, 2, ..., n\}$ such that

$$(u_i, v_{\pi(i)}) \in E$$

for all $u_i \in U$.



Symbolic Determinants

- Given a bipartite graph G, construct the $n \times n$ matrix A^G whose (i, j)th entry A^G_{ij} is a variable x_{ij} if $(u_i, v_j) \in E$ and zero otherwise.
- The **determinant** of A^G is

$$\det(A^{G}) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}.$$
 (5)

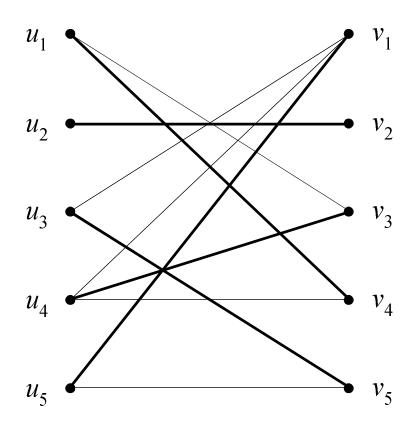
- $-\pi$ ranges over all permutations of n elements.
- $-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible prefect matching π .
 - As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 55 (Edmonds (1967)) G has a perfect matching if and only if $det(A^G)$ is not identically zero.

A Perfect Matching in a Bipartite Graph



The Perfect Matching in the Determinant

• The matrix is

$$A^G = egin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \ 0 & x_{22} & 0 & 0 & 0 \ x_{31} & 0 & 0 & 0 & x_{35} \ x_{41} & 0 & x_{43} & x_{44} & 0 \ \hline x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}.$$

• $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} - x_{13}x_{22}x_{31}x_{44}x_{55}$, each denoting a perfect matching.

How To Test If a Polynomial Is Identically Zero?

- $\det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $\det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 - Too many terms.
- Observation: If $det(A^G)$ is *identically zero*, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- What is the likelihood of obtaining a zero when $det(A^G)$ is *not* identically zero?

Number of Roots of a Polynomial

Lemma 56 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \not\equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that $p(x_1, x_2, \dots, x_m) = 0$ is

$$< mdM^{m-1}$$
.

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.$$

- So suppose $p(x_1, x_2, \ldots, x_m) \not\equiv 0$.
- Then a random

$$(x_1, x_2, \dots, x_n) \in \{0, 1, \dots, M-1\}^n$$

has a probability of $\leq md/M$ of being a root of p.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, ..., x_m) \not\equiv 0$.

- 1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
- 2: **if** $p(i_1, i_2, ..., i_m) \neq 0$ **then**
- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is identically zero";
- 6: end if

A Randomized Bipartite Perfect Matching Algorithm^a

We now return to the original problem of bipartite perfect matching.

```
1: Choose n^2 integers i_{11}, \ldots, i_{nn} from \{0, 1, \ldots, b-1\} randomly;
```

1: Calculate $\det(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;

2: **if**
$$\det(A^G(i_{11},\ldots,i_{nn})) \neq 0$$
 then

3: **return** "G has a perfect matching";

4: else

5: **return** "G has no perfect matchings";

6: end if

^aLovász (1979).

Analysis

- Pick $b = 2n^2$.
- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most $n^2d/b = 0.5$ because d = 1.
 - Run the algorithm independently k times and output "G has no perfect matchings" if they all say no.
 - The error probability is now reduced to at most 2^{-k} .
- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for all bipartite graphs of 2n nodes?^a

^aThanks to a lively class discussion on November 24, 2004.

Perfect Matching for General Graphs

- Page 390 is about bipartite perfect matching
- Now we are given a graph G = (V, E).

$$- V = \{v_1, v_2, \dots, v_{2n}\}.$$

- We are asked if there is a perfect matching.
 - A permutation π of $\{1, 2, \ldots, 2n\}$ such that

$$(v_i, v_{\pi(i)}) \in E$$

for all $v_i \in V$.

The Tutte Matrix^a

• Given a graph G = (V, E), construct the $2n \times 2n$ **Tutte** matrix T^G such that

$$T_{ij}^{G} = \begin{cases} x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{othersie.} \end{cases}$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 55 (p. 393):

Proposition 57 G has a perfect matching if and only if $det(T^G)$ is not identically zero.

^aWilliam Thomas Tutte (1917–2002).

Monte Carlo Algorithms^a

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no **false positives**).
 - If the algorithm answers in the negative, then it may make an error (**false negative**).
- The algorithm makes a false negative with probability ≤ 0.5 .
- This probability is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
 - It holds for *any* bipartite graph.

^aMetropolis and Ulam (1949).

The Markov Inequality^a

Lemma 58 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

$$\operatorname{prob}[x \ge kE[x]] \le 1/k.$$

• Let p_i denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i}$$

$$= \sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\geq kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

^aAndrei Andreyevich Markov (1856–1922).

An Application of Markov's Inequality

- Algorithm C runs in expected time T(n) and always gives the right answer.
- Consider an algorithm that runs C for time kT(n) and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time kT(n) and gives the wrong answer with probability $\leq 1/k$.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time mkT(n) once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1/(mk)$.
- This is a far cry from the previous algorithm's error probability of $\leq k^{-m}$.
- The loss comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.

FSAT for k-SAT Formulas (p. 380)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-sat formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

```
1: Start with an arbitrary truth assignment T;
 2: for i = 1, 2, ..., r do
      if T \models \phi then
 3:
        return "\phi is satisfiable with T";
4:
      else
 5:
        Let c be an unsatisfiable clause in \phi under T; {All
6:
        of its literals are false under T.
        Pick any x of these literals at \ random;
7:
        Modify T to make x true;
8:
      end if
9:
10: end for
```

11: **return** " ϕ is unsatisfiable";

3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333 \cdots + \epsilon)^n)$ time with r = 3n, a much better than $O(2^n)$.
- We will show immediately that it works well for 2sat.
- The state of the art is expected $O(1.322^n)$ time for 3sat and expected $O(1.474^n)$ time for 4sat.

^aUse this setting per run of the algorithm.

^bSchöning (1999).

^cKwama and Tamaki (2004); Rolf (2006).

Random Walk Works for 2SAT^a

Theorem 59 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let t(i) denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found if our starting T differs from \hat{T} in i values.
 - Their Hamming distance is i.

^aPapadimitriou (1991).

The Proof

- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} , because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T} .

• Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• As we are only interested in upper bounds, we solve

$$x(0) = 0$$

 $x(n) = x(n-1) + 1$
 $x(i) = \frac{x(i-1) + x(i+1)}{2} + 1, \quad 0 < i < n$

• This is one-dimensional random walk with a reflecting and an absorbing barrier.

• Add the equations up to obtain

$$= \frac{x(1) + x(2) + \dots + x(n)}{\frac{x(0) + x(1) + 2x(2) + \dots + 2x(n-2) + x(n-1) + x(n)}{2}} + n + x(n-1).$$

• Simplify to yield

$$\frac{x(1) + x(n) - x(n-1)}{2} = n.$$

• As x(n) - x(n-1) = 1, we have

$$x(1) = 2n - 1.$$

• Iteratively, we obtain

$$x(2) = 4n - 4,$$

$$\vdots$$

$$x(i) = 2in - i^{2}.$$

• The worst case happens when i = n, in which case

$$x(n) = n^2$$
.

The Proof (concluded)

• We therefore reach the conclusion that

$$t(i) \le x(i) \le x(n) = n^2.$$

- So the expected number of steps is at most n^2 .
- The algorithm picks a running time $2n^2$.
- This amounts to invoking the Markov inequality (p. 405) with k = 2, with the consequence of having a probability of 0.5.
- The proof does not yield a polynomial bound for 3SAT.^a

 $^{^{\}rm a} {\rm Contributed}$ by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r = 2mn^2$ to have an error probability of $\leq (2m)^{-1}$ by Markov's inequality.
- Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times.
- But the error probability is reduced to $\leq 2^{-m}$!
- Again, the gain comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.
- The gain also comes from the fact that the two algorithms are different.

How about Random CNF?

- Select m clauses independently and uniformly from the set of all possible disjunctions of k distinct, non-complementary literals with n boolean variables.
- Let m = cn.
- The formula is satisfiable with probability approaching 1 as $n \to \infty$ if $c < c_k$ for some $c_k < 2^k \ln 2 O(1)$.
- The formula is unsatisfiable with probability approaching 1 as $n \to \infty$ if $c > c_k$ for some $c_k > 2^k \ln 2 O(k)$.
- The above bounds are not tight yet.