
Comments

• The lower bound is rather tight because an upper bound

is n2n (p. 146).

• In the proof, we counted the number of circuits.

• Some circuits may not be valid at all.

• Others may compute the same boolean functions.

• Both are fine because we only need an upper bound.

• We do not need to consider the outdoing edges because

they have been counted in the incoming edges.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 156

Relations between Complexity Classes

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 157

Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = ⊓f(|x |) for any x.a

– Mf halts after O(|x | + f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is basically bounded by f(n).

aThis point will become clear in Proposition 15 on p. 162.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 158

Examples of Proper Functions

• Most “reasonable” functions are proper: c, ⌈log n⌉,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Nonproper functions when serving as the time bounds

for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).a

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 159

Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations, the

TMs are not required to halt at all.

• When the space is bounded by a proper function f ,

computations can be assumed to halt:

– Run the TM associated with f to produce an output

of length f(n) first.

– The space-bound computation must repeat a

configuration if it runs for more than cn+f(n) steps

for some c (p. 179).

– So we can count steps to prevent infinite loops.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 160

Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precise f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

∗ If M is a TM with input and output, we exclude

the first and the last strings.

• M can be deterministic or nondeterministic.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 161

Precise TMs Are General

Proposition 15 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n + f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”

or an “alarm clock.”

aIt can be deterministic or nondeterministic.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 162

Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 163

Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

L = SPACE(log n),

NL = NSPACE(log n).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164

Complements of Nondeterministic Classes

• From p. 126, we know R, RE, and coRE are distinct.

– coRE contains the complements of languages in RE,

not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the

language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.

– hamiltonian path complement is the set of

graphs without a Hamiltonian path.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165

The Co-Classes

• For any complexity class C, coC denotes the class

{L̄ : L ∈ C}.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.

– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to

one that decides L̄ within the same time or space

bound by reversing the “yes” and “no” states.

• Whether nondeterministic classes for time are closed

under complement is not known (p. 78).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 166

Comments

• Then coC is the class

{L̄ : L ∈ C}.

– So L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L 6∈ coC.

– coC is not defined as C̄.

• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.

• Then coC = {{1, 3, 5, 7, 9, . . .}}.

• But C̄ = 2{1,2,3,...}∗ − {{2, 4, 6, 8, 10, . . .}}.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 167

The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ; x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168

Hf ∈ TIME(f(n)3)

• For each input M ; x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 60), the universal

TM (p. 112), and the linear speedup theorem (p. 66).

– Our simulator accepts M ; x if and only if M accepts

x before the alarm clock runs out.

• From p. 65, the total running time is O(ℓMk2
Mf(n)2),

where ℓM is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As ℓMk2
M = O(n), the running time is O(f(n)3), where

the constant is independent of M .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 169

Hf 6∈ TIME(f(⌊n/2⌋))
• Suppose TM MHf

decides Hf in time f(⌊n/2⌋).

• Consider machine Df (M):

if MHf
(M ; M) = “yes” then “no” else “yes”

• Df on input M runs in the same time as MHf
on input

M ; M , i.e., in time f(⌊ 2n+1
2 ⌋) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ;M .

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 170

The Proof (concluded)

• First,

Df (Df) = “yes”

⇒ Df ; Df 6∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df) = “no”

a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 171

The Time Hierarchy Theorem

Theorem 16 If f(n) ≥ n is proper, then

TIME(f(n)) (TIME(f(2n + 1)3).

• The quantified halting problem makes it so.

Corollary 17 P (EXP.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 16,

TIME(2n) (TIME((22n+1)3) ⊆ TIME(2n2

) ⊆ EXP.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 172

The Space Hierarchy Theorem

Theorem 18 (Hennie and Stearns (1966)) If f(n) is

proper, then

SPACE(f(n)) (SPACE(f(n) log f(n)).

Corollary 19 L (PSPACE.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 173

The Reachability Method

• The computation of a time-bounded TM can be

represented by directional transitions between

configurations.

• The reachability method constructs a directed graph

with all the TM configurations as its nodes and edges

connecting two nodes if one yields the other.

• The start node representing the initial configuration has

zero in degree.

• When the TM is nondeterministic, a node may have an

out degree greater than one.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 174

Illustration of the Reachability Method

yes

yes

Initial

configuration

The reachability method may give the edges on the fly

without explicitly storing the whole configuration graph.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 175

Relations between Complexity Classes

Theorem 20 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klog n+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Use the depth-first search as f is proper.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 176

Proof of Theorem 20(2)

• (continued)

– Specifically, generate a f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.

– Simulate the NTM based on the choices.

– Recycle the space and then repeat the above steps

until a “yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) as space is recycled.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 177

Proof of Theorem 20(3)

• Let k-string NTM

M = (K, Σ, ∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 178

Proof of Theorem 20(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K| × (n + 1) × |Σ|(2k−4)f(n) = O(c
log n+f(n)
1) (2)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 179

Proof of Theorem 20(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .) [there may be many of them].

• The problem is therefore that of reachability on a

graph with O(c
log n+f(n)
1) nodes.

• It is in TIME(clog n+f(n)) for some c because

reachability is in TIME(nk) for some k and

[

c
log n+f(n)
1

]k

= (ck
1)log n+f(n).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 180

The Grand Chain of Inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 19 (p. 173), we know L (PSPACE.

• The chain must break somewhere between L and

PSPACE.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.a

aCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 181

Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 88),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof that the exponential gap is inherent,

however.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic, a

polynomial, by Savitch’s theorem.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182

Savitch’s Theorem

Theorem 21 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, ⌈log n⌉) holds.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 183

The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i − 1) and PATH(z, y, i − 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, ⌈log n⌉) with a depth-first search

on a graph with nodes (x, y, i)s (see next page).

• Like stacks in recursive calls, we keep only the current

path of (x, y, i)s.

• The space requirement is proportional to the depth of

the tree, ⌈log n⌉.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 184

3$7+�[�\�ORJ�Q�

3$7+�[�]�ORJ�Q��� 3$7+�]�\�ORJ�Q���

Ø\HVÙ
ØQRÙ

ØQRÙ

• Depth is ⌈log n⌉, and each node (x, y, i) needs space

O(log n).

• The total space is O(log2 n).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 185

The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ G then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i − 1) and PATH(z, y, i − 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 186

The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 22 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s theorem to the configuration graph of

the NTM on the input.

• From p. 179, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we supply the whole graph before applying

Savitch’s theorem, we get O(cf(n)) space!

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 187

The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We check for connectedness only when i = 0, by

examining the input string.

• There, given configurations x and y, we go over the

Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 188

The Proof (concluded)

• The z variable in the algorithm simply runs through all

possible valid configurations.

• Each z has length O(f(n)) by Eq. (2) on p. 179.

• An alternative is to let z = 0, 1, . . . , O(cf(n)) and makes

sure it is a valid configuration before using it in the

recursive calls.a

aThanks to a lively class discussion on October 13, 2004.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 189

Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• It may be very powerful with respect to time as it is not

known if P = NP.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 190

Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes (p. 166).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.

aSzelepscényi (1987) and Immerman (1988).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191

