
Comments

• The lower bound is rather tight because an upper bound

is n2n (p. 146).

• In the proof, we counted the number of circuits.

• Some circuits may not be valid at all.

• Others may compute the same boolean functions.

• Both are fine because we only need an upper bound.

• We do not need to consider the outdoing edges because

they have been counted in the incoming edges.
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Relations between Complexity Classes
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Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = ⊓f(|x |) for any x.a

– Mf halts after O(|x | + f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is basically bounded by f(n).

aThis point will become clear in Proposition 15 on p. 162.
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Examples of Proper Functions

• Most “reasonable” functions are proper: c, ⌈log n⌉,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Nonproper functions when serving as the time bounds

for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).a

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).
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Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations, the

TMs are not required to halt at all.

• When the space is bounded by a proper function f ,

computations can be assumed to halt:

– Run the TM associated with f to produce an output

of length f(n) first.

– The space-bound computation must repeat a

configuration if it runs for more than cn+f(n) steps

for some c (p. 179).

– So we can count steps to prevent infinite loops.
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Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precise f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

∗ If M is a TM with input and output, we exclude

the first and the last strings.

• M can be deterministic or nondeterministic.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 161



Precise TMs Are General

Proposition 15 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n + f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”

or an “alarm clock.”

aIt can be deterministic or nondeterministic.
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Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).
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Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

L = SPACE(log n),

NL = NSPACE(log n).
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Complements of Nondeterministic Classes

• From p. 126, we know R, RE, and coRE are distinct.

– coRE contains the complements of languages in RE,

not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the

language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.

– hamiltonian path complement is the set of

graphs without a Hamiltonian path.
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The Co-Classes

• For any complexity class C, coC denotes the class

{L̄ : L ∈ C}.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.

– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to

one that decides L̄ within the same time or space

bound by reversing the “yes” and “no” states.

• Whether nondeterministic classes for time are closed

under complement is not known (p. 78).
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Comments

• Then coC is the class

{L̄ : L ∈ C}.

– So L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L 6∈ coC.

– coC is not defined as C̄.

• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.

• Then coC = {{1, 3, 5, 7, 9, . . .}}.

• But C̄ = 2{1,2,3,...}∗ − {{2, 4, 6, 8, 10, . . .}}.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 167



The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ; x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.
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Hf ∈ TIME(f(n)3)

• For each input M ; x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 60), the universal

TM (p. 112), and the linear speedup theorem (p. 66).

– Our simulator accepts M ; x if and only if M accepts

x before the alarm clock runs out.

• From p. 65, the total running time is O(ℓMk2
Mf(n)2),

where ℓM is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As ℓMk2
M = O(n), the running time is O(f(n)3), where

the constant is independent of M .
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Hf 6∈ TIME(f(⌊n/2⌋))
• Suppose TM MHf

decides Hf in time f(⌊n/2⌋).

• Consider machine Df (M):

if MHf
(M ; M) = “yes” then “no” else “yes”

• Df on input M runs in the same time as MHf
on input

M ; M , i.e., in time f(⌊ 2n+1
2 ⌋) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ;M .
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The Proof (concluded)

• First,

Df (Df ) = “yes”

⇒ Df ; Df 6∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df ) = “no”

a contradiction

• Similarly, Df (Df ) = “no” ⇒ Df (Df ) = “yes.”
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The Time Hierarchy Theorem

Theorem 16 If f(n) ≥ n is proper, then

TIME(f(n)) ( TIME(f(2n + 1)3).

• The quantified halting problem makes it so.

Corollary 17 P ( EXP.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 16,

TIME(2n) ( TIME((22n+1)3) ⊆ TIME(2n2

) ⊆ EXP.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 172



The Space Hierarchy Theorem

Theorem 18 (Hennie and Stearns (1966)) If f(n) is

proper, then

SPACE(f(n)) ( SPACE(f(n) log f(n)).

Corollary 19 L ( PSPACE.
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The Reachability Method

• The computation of a time-bounded TM can be

represented by directional transitions between

configurations.

• The reachability method constructs a directed graph

with all the TM configurations as its nodes and edges

connecting two nodes if one yields the other.

• The start node representing the initial configuration has

zero in degree.

• When the TM is nondeterministic, a node may have an

out degree greater than one.
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Illustration of the Reachability Method

yes


yes

Initial


configuration


The reachability method may give the edges on the fly

without explicitly storing the whole configuration graph.
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Relations between Complexity Classes

Theorem 20 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klog n+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Use the depth-first search as f is proper.
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Proof of Theorem 20(2)

• (continued)

– Specifically, generate a f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.

– Simulate the NTM based on the choices.

– Recycle the space and then repeat the above steps

until a “yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) as space is recycled.
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Proof of Theorem 20(3)

• Let k-string NTM

M = (K, Σ, ∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).
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Proof of Theorem 20(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K| × (n + 1) × |Σ|(2k−4)f(n) = O(c
log n+f(n)
1 ) (2)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.
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Proof of Theorem 20(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .) [there may be many of them].

• The problem is therefore that of reachability on a

graph with O(c
log n+f(n)
1 ) nodes.

• It is in TIME(clog n+f(n)) for some c because

reachability is in TIME(nk) for some k and

[

c
log n+f(n)
1

]k

= (ck
1)log n+f(n).
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The Grand Chain of Inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 19 (p. 173), we know L ( PSPACE.

• The chain must break somewhere between L and

PSPACE.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.a

aCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”
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Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 88),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof that the exponential gap is inherent,

however.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic, a

polynomial, by Savitch’s theorem.
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Savitch’s Theorem

Theorem 21 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, ⌈log n⌉) holds.
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The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i − 1) and PATH(z, y, i − 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, ⌈log n⌉) with a depth-first search

on a graph with nodes (x, y, i)s (see next page).

• Like stacks in recursive calls, we keep only the current

path of (x, y, i)s.

• The space requirement is proportional to the depth of

the tree, ⌈log n⌉.
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• Depth is ⌈log n⌉, and each node (x, y, i) needs space

O(log n).

• The total space is O(log2 n).
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The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ G then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i − 1) and PATH(z, y, i − 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 22 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s theorem to the configuration graph of

the NTM on the input.

• From p. 179, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we supply the whole graph before applying

Savitch’s theorem, we get O(cf(n)) space!
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The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We check for connectedness only when i = 0, by

examining the input string.

• There, given configurations x and y, we go over the

Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.
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The Proof (concluded)

• The z variable in the algorithm simply runs through all

possible valid configurations.

• Each z has length O(f(n)) by Eq. (2) on p. 179.

• An alternative is to let z = 0, 1, . . . , O(cf(n)) and makes

sure it is a valid configuration before using it in the

recursive calls.a

aThanks to a lively class discussion on October 13, 2004.
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Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• It may be very powerful with respect to time as it is not

known if P = NP.
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Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes (p. 166).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.

aSzelepscényi (1987) and Immerman (1988).
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