Cantor's® Theorem

Theorem 7 The set of all subsets of N (2V) is infinite and

not countable.

e Suppose it is countable with f : N — 2N being a

bijection.
e Consider theset B={keN: k¢ f(k)} CN.

e Suppose B = f(n) for some n € N.

2Georg Cantor (1845-1918). According to Kac and Ulam, “[If] one
had to name a single person whose work has had the most decisive in-
fluence on the present spirit of mathematics, it would almost surely be

Georg Cantor.”

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106

The Proof (concluded)

If n € f(n), then n € B, but then n ¢ B by B’s
definition.

If n¢ f(n), then n ¢ B, but then n € B by B’s
definition.

Hence B # f(n) for any n.

f is not a bijection, a contradiction.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 107

Cantor’s Diagonalization Argument lllustrated

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 108

A Corollary of Cantor’'s Theorem

Corollary 8 For any set T', finite or infinite,

T <|2"].

The inequality holds in the finite A case.
Assume A is infinite now.
IT) < |2%]: Consider f(x) = {z}.

The strict inequality uses the same argument as

Cantor’s theorem.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109

A Second Corollary of Cantor’s Theorem

Corollary 9 The set of all functions on N is not countable.
e It suffices to prove it for functions from N to {0,1}.

e Every such function f: N — {0,1} determines a set
(n: f(n) =1} CN
and vice versa.

e So the set of functions from N to {0, 1} has cardinality
|28,

e Corollary 8 (p. 109) then implies the claim.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110

Existence of Uncomputable Problems

Every program is a finite sequence of Os and 1s, thus a

nonnegative integer.

Hence every program corresponds to some integer.
The set of programs is countable.

A function is a mapping from integers to integers.

The set of functions is not countable by Corollary 9
(p. 110).

So there must exist functions for which there are no

programs.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111

Universal Turing Machine?

e A universal Turing machine U interprets the input
as the description of a TM M concatenated with the

description of an input to that machine, x.

— Both M and x are over the alphabet of U.

e [/ simulates M on x so that
UM;x)=M(x).

e U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which

executes any valid bytecode.

2Turing (1936).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112

The Halting Problem

e Undecidable problems are problems that have no

algorithms or languages that are not recursive.
e We knew undecidable problems exist (p. 111).

e We now define a concrete undecidable problem, the

halting problem:
H ={M;z: M(z) #/}.

— Does M halt on input x?

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 113

H Is Recursively Enumerable

Use the universal TM U to simulate M on z.
When M is about to halt, U enters a “yes” state.
If M(z) diverges, so does U.

This TM accepts H.

Membership of x in any recursively enumerative

language accepted by M can be answered by asking

M;x e H?

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 114

H |s Not Recursive

e Suppose there is a TM My that decides H.

e Consider the program D(M) that calls My:
: if My (M; M) = “yes” then
/"y {Writing an infinite loop is easy, right?}

CdyeS” ;

- end if

1
2
3: else
4
5

e Consider D(D):
— D(D)=/"= My(D;D)= “yes” = D;D € H=
D(D) # ", a contradiction.
(D) = “yes” = My(D; D)= “no” = D;D ¢ H=
(D)

/", a contradiction.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115

Comments

e Two levels of interpretations of M:

— A sequence of Os and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes.
— Concepts should be familiar to computer scientists.

— Supply a C compiler to a C compiler, a Lisp

interpreter to a Lisp interpreter, etc.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116

Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.?
e Then 27 C T because 27 is a set of sets.

But we know |21 | > |T| (p. 109)!

We got a “contradiction.”
So what gives?
Are we willing to give up Cantor’s theorem?

e If not, what is a set?

@Recall this ontological argument for the existence of God by
St Anselm (—1109) in the 11th century: If something is possible but is
not part of God, then God is not the greatest possible object of thought,

a contradiction.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117

Self-Loop Paradoxes (continued)

Russell’s Paradox (1901): Consider R={A: A ¢ A}.
e If R € R, then R ¢ R by definition.
o If RZ R, then R € R also by definition.

e In either case, we have a “contradiction.”
Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118

Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): “I’'m not a

woman you can trust.”
Spin City: “I am not gay, but my boyfriend is.”

Numbers 12:3, Old Testament: “Moses was the most

humble person in all the world [---]|” (attributed to
Moses).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119

More Undecidability

H* ={M : M halts on all inputs}.

— Given M ; x, we construct the following machine:?
Mo (y) - M(x).

M, halts on all inputs if and only if M halts on =.
In other words, M, € H* if and only if M;x € H.

So if the said language were recursive, H would be

recursive, a contradiction.

— This technique is called reduction.

aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 120

More Undecidability (concluded)
e {M;x : there is a y such that M (x) = y}.

e {M:;x :the computation M on input = uses all states of M }.

o {M;z;y: M(z)=y}.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121

Reductions in Proving Undecidability

Suppose we are asked to prove L is undecidable.
Language H is known to be undecidable.

We try to find a computable transformation (or
reduction) R such that?

Vx(R(x) € L if and only if z € H).

e We can answer “xz € H?” for any x by asking R(x) € L?

e This suffices to prove that L is undecidable.

2Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122

Complements of Recursive Languages

Lemma 10 If L is recursive, then so is L.
e Let L be decided by M (which is deterministic).

e Swap the “yes” state and the “no” state of M.

e The new machine decides L

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 123

Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and L are

recursively enumerable.

e Suppose both L and L are recursively enumerable,

accepted by M and M, respectively.
e Simulate M and M in an interleaved fashion.
o If M accepts, then x € L and M’ halts on state “yes.”

o If M accepts, then x & L and M’ halts on state “no.”

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 124

A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive,

then L is not recursively enumerable.
e Suppose L is recursively enumerable.
e Then both L and L are recursively enumerable.
e By Lemma 11 (p. 124), L is recursive, a contradiction.

Corollary 13 H is not recursively enumerable.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 125

R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable (note that coRE is not RE).
e coORE={L:T €RE.
e RE={L:L¢RE).

R: The set of all recursive languages.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 126

R, RE, and coRE (concluded)
R = RENcoRE (p. 124).

There exist languages in RE but not in R and not in
coRE.

— Such as H (p. 114 and p. 115).

There are languages in coRE but not in RE.

— Such as H (p. 125).

There are languages in neither RE nor coRE.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 127

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128

Boolean Logic

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 129

Boolean Logic*

Boolean variables: xi,zo,....
Literals: x;, —x;.
Boolean connectives: V, A, —.

Boolean expressions: Boolean variables, —¢ (negation),

1V @2 (disjunction), ¢1 A ¢2 (conjunction).
o \/7 | ¢; stands for ¢1 V 2 V -+ V ¢y.
o A\!_, ¢ stands for ¢p1 A2 A -+ A .
Implications: ¢; = ¢2 is a shorthand for —¢; V ¢2.

Biconditionals: ¢1 < ¢2 is a shorthand for

(P1 = ¢2) A (d2 = ¢1).
2Boole (1815-1864) in 1847.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 130

Truth Assignments

e A truth assignment 7' is a mapping from boolean

variables to truth values true and false.

e A truth assignment is appropriate to boolean
expression ¢ if it defines the truth value for every

variable in ¢.

— {1 = true,xo = false} is appropriate to x1 V xs.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 131

Satisfaction

e T = ¢ means boolean expression ¢ is true under T’ in

other words, 1" satisfies ¢.

e ¢ and ¢y are equivalent, written

P1 = o,
if for any truth assignment 7' appropriate to both of
them, T' = ¢ if and only if T' = ¢.

— Equivalently, for any truth assignment 1" appropriate
to both of them, T = (91 & ¢2).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 132

Truth Tables

e Suppose ¢ has n boolean variables.

e A truth table contains 2" rows, one for each possible

truth assignment of the n variables together with the

truth value of ¢ under that truth assignment.

e A truth table can be used to prove if two boolean

expressions are equivalent.

— Check if they give identical truth values under all 2"

truth assignments.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 133

A Truth Table

pPAg
0

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 134

De Morgan's® Laws

e De Morgan’s laws say that

“(P1 A P2) = PV e,
2(P1Vg2) = —p1 Ao,
e Here is a proof for the first law:
P1 P2 | (d1 Ad2) —P1 Vg
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

2 Augustus DeMorgan (1806-1871).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 135

Conjunctive Normal Forms

e A boolean expression ¢ is in conjunctive normal
form (CNF) if

n
¢ — /\ Ci)
i=1
where each clause C; is the disjunction of zero or more
literals.?
e For example, (21 Va2) A (x1V —x2) A (22 V 23) is in CNF.

e Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136

Disjunctive Normal Forms

e A boolean expression ¢ is in disjunctive normal form
(DNF) if

¢=\/ D,
i=1

where each implicant D, is the conjunction of one or

more literals.

e For example,
(ZEl N\ 32‘2) \4 (ZEl A\ _15132> V (QZ‘Q A\ 5133)

1s a DNF.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 137

Any Expression ¢ Can Be Converted into CNFs and DNFs

¢ = z;: This is trivially true.

¢ = 91 and a CNF is sought: Turn ¢; into a DNF and
apply de Morgan’s laws to make a CNF for ¢.

¢ = ~¢1 and a DNF is sought: Turn ¢, into a CNF and
apply de Morgan’s laws to make a DNF for ¢.

®» = @1V 92 and a DNF is sought: Make ¢; and ¢o
DNF's.

¢ = ¢1 V ¢2 and a CNF is sought: Let ¢; = A\, A; and
d2 = \;2, B; be CNFs. Set

niy mn2

o= /\ /\(4:VB)).

i=14=1

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 138

Any Expression ¢ Can Be Converted into CNFs and DNFs
(concluded)

O = ¢1 N\ ¢ and a CNF is sought: Make ¢; and ¢-
CNPFs.

¢ = ¢1 A ¢2 and a DNF is sought: Let ¢ =/, A; and
¢2 = \/;2, B; be DNFs. Set

niy mn2

o=\ \ (4 A B;).

i=1j=1

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 139

An Example: Turn =((a Ay) V (2 Vw)) into a DNF

~((aAy)V(zVw))

~(CNFVCNF)
~(CNF

() =((aVzVw)A(yVzVw))

de Morgan

(a A
~(((@) A () V (2 Vw))
(
(

(m(aVzVw)V-(yVzVw))
((ma A=z A=w)V (my A -z A —w)).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 140

Satisfiability

e A boolean expression ¢ is satisfiable if there is a truth

assignment T appropriate to it such that T = ¢.

e ¢ is valid or a tautology,* written = ¢, if T' = ¢ for all
" appropriate to ¢.

e ¢ is unsatisfiable if and only if ¢ is false under all

appropriate truth assignments if and only if —¢ is valid.

2Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the
most important philosophers of all time. “God has arrived,” the great
economist Keynes (1883-1946) said of him on January 18, 1928. “I met
him on the 5:15 train.”

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 141

SATISFIABILITY (SAT)

The length of a boolean expression is the length of the

string encoding it.
SATISFIABILITY (SAT): Given a CNF ¢, is it satisfiable?

Solvable in exponential time on a TM by the truth table
method.

Solvable in polynomial time on an NTM, hence in NP
(p. 80).

A most important problem in answering the P = NP
problem (p. 242).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 142

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT)
and VALIDITY

e UNSAT (SAT COMPLEMENT): Given a boolean expression
@, is it unsatisfiable?

e VALIDITY: Given a boolean expression ¢, is it valid?

— ¢ is valid if and only if —¢ is unsatisfiable.

— S0 UNSAT and VALIDITY have the same complexity.

e Both are solvable in exponential time on a TM by the
truth table method.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 143

Relations among SAT, UNSAT, and VALIDITY

T

Unsatisfiable

\—//

e The negation of an unsatisfiable expression is a valid

expression.

e None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 144

Boolean Functions

e An n-ary boolean function is a function

f : {true,false}" — {true,false}.

e It can be represented by a truth table.

e There are 22" such boolean functions.

— Each of the 2" truth assignments can make f true or

false.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 145

Boolean Functions (continued)

e A boolean expression expresses a boolean function.

— Think of its truth value under all truth assignments.

e A boolean function expresses a boolean expression.

- \/T = ¢, literal y; is true under T<y1 ARRENA yn)

* y1 A -+ Ayp is the minterm over {z1,...,z,} for
1.

— The length? is < n2" < 227,

— In general, the exponential length in n cannot be
avoided (p. 153)!

We count the logical connectives here.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 146

Boolean Functions (concluded)

r1 T2 f($1,$2)

1

0
1

0 0
0 1
1 0
1 1

The corresponding boolean expression:

<—|ZE1 A\ _1332) \V4 (—'331 A\ ZEQ) V (331 A\ ZEQ).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 147

Boolean Circuits

A boolean circuit is a graph C whose nodes are the

gates.

There are no cycles in C.

All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

Each gate has a sort from

{true,false, V, A\, 0, x1,%2,...}.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 148

Boolean Circuits (concluded)

Gates of sort from {true,false,z1,xs,...} are the

inputs of C and have an indegree of zero.
The output gate(s) has no outgoing edges.
A boolean circuit computes a boolean function.

The same boolean function can be computed by

infinitely many boolean circuits.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 149

Boolean Circuits and Expressions

e They are equivalent representations.

e One can construct one from the other:

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 150

An Example

((r,Hx,)0, 0xy)) O(=(x,0x,))
[]

N

DAD/
NN

e Circuits are more economical because of the possibility

of sharing.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 151

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment

such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the

circuit has no variable gates.

e CIRCUIT SAT € NP: Guess a truth assignment and then

evaluate the circuit.

e CIRCUIT VALUE € P: Evaluate the circuit from the input

gates gradually towards the output gate.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 152

Some Boolean Functions Need Exponential Circuits?®

Theorem 14 (Shannon (1949)) For any n > 2, there is
an n-ary boolean function f such that no boolean circuits

with 2™ /(2n) or fewer gates can compute it.
e There are 22" different n-ary boolean functions.

e So it suffices to prove that the number of boolean

circuits with 27/(2n) or fewer gates is less than 22".

@Can be strengthened to “almost all boolean functions ...”

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 153

The Proof (concluded)

e There are at most ((n +5) x m?)™ boolean circuits with

m or fewer gates (see next page).
e But ((n+5) x m?)™ < 22" when m = 2"/(2n):
mlogy((n +5) x m?)

4n?
_gn (1 282
2n

< 2"

for n > 2.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 154

n+5 choices

m choices m choices

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 155

