Decidability and Recursive Languages

Let L C (X —{||})* be a language, i.e., a set of strings
of symbols with a finite length.

— For example, {0,01, 10,210, 1010, .. .}.

Let M be a TM such that for any string x:
— If z € L, then M (x) = “yes.”
— If x € L, then M (x) = “no.”

We say M decides L.

If L is decided by some TM, then L is recursive.

— Palindromes over {0, 1}* are recursive.
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Acceptability and Recursively Enumerable Languages

e Let L C (X —{| |})* be a language.

e Let M be a TM such that for any string x:
— If x € L, then M (x) = “yes.”
— If x € L, then M (x) =

e We say M accepts L.
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Acceptability and Recursively Enumerable Languages
(concluded)

e If L is accepted by some TM, then L is a recursively

enumerable language.

— A recursively enumerable language can be generated
by a TM, thus the name.

— That is, there is an algorithm such that for every

x € L, it will be printed out eventually.
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Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively

enumerable.
e We need to design a TM that accepts L.
e Let TM M decide L.

e We next modify M'’s program to obtain M’ that accepts
L.

M’ is identical to M except that when M is about to

halt with a “no” state, M’ goes into an infinite loop.

M’ accepts L.
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Turing-Computable Functions

o Let f:(X—{|]})" — X"

— Optimization problems, root finding problems, etc.
e Let M be a TM with alphabet ..

e VM computes f if for any string x € (3 — {| |})*,
M(z) = f(z).

e We call f a recursive function® if such an M exists.

aKurt Godel (1931).
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Church’s Thesis or the Church-Turing Thesis

What is computable is Turing-computable; TMs are
algorithms (Kleene 1953).

Many other computation models have been proposed.

— Recursive function (Godel), A calculus (Church),
formal language (Post), assembly language-like RAM
(Shepherdson & Sturgis), boolean circuits (Shannon),
extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.
All have been proved to be equivalent.

No “intuitively computable” problems have been shown
not to be Turing-computable (yet).
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Extended Church’s Thesis

e All “reasonably succinct encodings” of problems are

polynomaally related.

— Representations of a graph as an adjacency matrix

and as a linked list are both succinct.
— The unary representation of numbers is not succinct.

— The binary representation of numbers is succinct.
x 1001 vs. 111111111.

e All numbers for TMs will be binary from now on.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52



Turing Machines with Multiple Strings

A k-string Turing machine (TM) is a quadruple
M = (K,%,5,s).

K, >, s are as before.

§: K x¥k — (KU{h, “yes”, “no”}) x (X x {«, —, —})*.

All strings start with a >.
The first string contains the input.
Decidability and acceptability are the same as before.

When TMs compute functions, the output is on the last
(kth) string.
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A 2-String TM

'

>1000110000111001110001110uuIL

v

>111110000uuuLLLUULUULLUUUULIL

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54



PALINDROME Revisited

e A 2-string TM can decide PALINDROME in O(n) steps.

— It copies the input to the second string.

The cursor of the first string is positioned at the first
symbol of the input.

The cursor of the second string is positioned at the

last symbol of the input.

The two cursors are then moved in opposite

directions until the ends are reached.

The machine accepts if and only if the symbols under

the two cursors are identical at all steps.
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'

>ababbaabbaabbaabbabauuu

v
>ababbaabbaabbaabbabaliil
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Configurations and Yielding

e The concept of configuration and yielding is the same as

before except that a configuration is a (2k 4 1)-triple

(Q7w17u17w27u27 .- .,Wk,uk).

— w;u; 1s the ith string.
— The 2th cursor is reading the last symbol of w;.

— Recall that > is each w;’s first symbol.

e The k-string TM’s initial configuration is

2k
(s,>>, 2,0, €,>,€,...,0>,€).
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Time Complexity

The multistring TM is the basis of our notion of the
time expended by TM computations.

If for a k-string TM M and input x, the TM halts after
t steps, then the time required by M on input z is t.

If M(x) =", then the time required by M on x is oo.

Machine M operates within time f(n) for f : N — N
if for any input string x, the time required by M on x is
at most f(|x]).

— | x| is the length of string .

— Function f(n) is a time bound for M.
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Time Complexity Classes?®

Suppose language L C (3 — {| |})* is decided by a
multistring TM operating in time f(n).

We say L € TIME(f(n)).

TIME(f(n)) is the set of languages decided by TMs
with multiple strings operating within time bound f(n).

TIME(f(n)) is a complexity class.
— PALINDROME is in TIME(f(n)), where f(n) = O(n).

2Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns
(1965).
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The Simulation Technique

Theorem 3 Given any k-string M operating within time
f(n), there exists a (single-string) M’ operating within time
O(f(n)?) such that M(x) = M'(z) for any input x.

e The single string of M’ implements the k strings of M.

e Represent configuration (q, wy, u1, wa, us, ..., W, ug) of

M by configuration
(q,>wiug < whus < -+ <L wrpug <1 <)

of M.
— < is a special delimiter.

— w, is w; with the first and last symbols “primed.”
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The Proof (continued)

e The “priming” is to ensure that M’ knows which symbol

is under the cursor for each simulated string.®

e The initial configuration of M’ is

k — 1 pairs

7\

(s, >z’ <> <a<).

2Added because of comments made by Mr. Che-Wei Chang
(R95922093) on September 27, 2006.
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The Proof (continued)

e To simulate each move of M:

— M’ scans the string to pick up the k symbols under
the cursors.
+ The states of M’ must include K x ¥ to

remember them.
« The transition functions of M’ must also reflect it.

— M’ then changes the string to reflect the overwriting

of symbols and cursor movements of M.
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The Proof (continued)

It is possible that some strings of M need to be
lengthened.

— The linear-time algorithm on p. 30 can be used for

each such string.
The simulation continues until M halts.
M’ erases all strings of M except the last one.

Since M halts within time f(|z|), none of its strings

ever becomes longer than f(|z|).?

e The length of the string of M’ at any time is O(kf(|x|)).

2We tacitly assume f(n) > n.
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string 3 | string 4

string 3 I string 4
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The Proof (concluded)

e Simulating each step of M takes, per string of M,
O(kf(|z])) steps.
— O(f(|x|)) steps to collect information.

— O(kf(|z|)) steps to write and, if needed, to lengthen
the string.

o M’ takes O(k*f(|x|)) steps to simulate each step of M.

e As there are f(|x|) steps of M to simulate, M’ operates
within time O(k?f(|x|)?).
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Linear Speedup?

Theorem 4 Let L € TIME(f(n)). Then for any € > 0,
L € TIME(f'(n)), where f'(n) =¢€ef(n) +n+ 2.

@Hartmanis and Stearns (1965).
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Implications of the Speedup Theorem

e State size can be traded for speed.

— mF - |Z|3*_fold increase to gain a speedup of O(m).

e If f(n) = cn with ¢ > 1, then ¢ can be made arbitrarily

close to 1.

o If f(n) is superlinear, say f(n) = 14n? + 31n, then the
constant in the leading term (14 in this example) can be

made arbitrarily small.
— Arbitrary linear speedup can be achieved.

— This justifies the asymptotic big-O notation.
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P

By the linear speedup theorem, any polynomial time
bound can be represented by its leading term n”* for

some k > 1.

If L is a polynomially decidable language, it is in
TIME(n*) for some k € N.
— Clearly, TIME(n*) C TIME(n**1).

The union of all polynomially decidable languages is
denoted by P:

P = | J TIME(n").
k>0

Problems in P can be efficiently solved.
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Charging for Space

e We do not charge the space used only for input and

output.
e Let k£ > 2 be an integer.
e A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.
The input string is read-only.
The last string, the output string, is write-only.
So its cursor never moves to the left.

The cursor of the input string does not wander off
into the | |s.
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Space Complexity
e Consider a k-string TM M with input =.

e Assume non-| | is never written over by | |.?
— The purpose is not to artificially downplay the space

requirement.

e If M halts in configuration

(H, w1, u1,ws,us, ..., Wk, Uk ), then the space required

by M on input z is Zle [w;u; .

2Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27,
2006.
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Space Complexity (concluded)

e If M is a TM with input and output, then the space

required by M on input x is Zf:_; [w;u; ).

e Machine M operates within space bound f(n) for
f N — N if for any input z, the space required by M
on x is at most f(|x|).
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Space Complexity Classes

Let L be a language.

Then
L € SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

SPACE(f(n)) is a set of languages.

— PALINDROME € SPACE(logn): Keep 3 counters.

As in the linear speedup theorem (Theorem 4), constant

coefficients do not matter.
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Nondeterminism?

A nondeterministic Turing machine (NTM) is a
quadruple N = (K, X, A, s).

K, >, s are as before.

ACKXxY¥— (KU{h,“yes”, “no” }) x ¥ x {«,—, —}is

a relation, not a function.
— For each state-symbol combination, there may be

more than one next steps—or none at all.

A configuration yields another configuration in one step

if there exists a rule in A that makes this happen.

2Rabin and Scott (1959).
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Computation Tree and Computation Path

A
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Decidability under Nondeterminism

e Let L be a language and N be an NTM.
e N decides L if for any z € >*, x € L if and only if there
is a sequence of valid configurations that ends in “yes.”

— It is not required that the NTM halts in all

computation paths.

— If z € L, no nondeterministic choices should lead to a

“yes” state.

e What is key is the algorithm’s overall behavior not

whether it gives a correct answer for each particular run.

e Determinism is a special case of nondeterminism.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75



An Example

e Let L be the set of logical conclusions of a set of axioms.
— Predicates not in L may be false under the axioms.

— They may also be independent of the axioms.

«x That is, they can be assumed true or false without

contradicting the axioms.
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An Example (concluded)

e Let ¢ be a predicate whose validity we would like to

prove.

e Consider the nondeterministic algorithm:
. b := true;
: while the input predicate ¢ # b do
Generate a logical conclusion of b by applying
some of the axioms; {Nondeterministic choice.}
Assign this conclusion to b;

. end while

A ”

yes

e This algorithm decides L.
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Complementing a TM's Halting States

e Let M decide L, and M’ be M after “yes” < “no”.

e If M is a (deterministic) TM, then M’ decides L

e But if M is an NTM, then M’ may not decide L.
— It is possible that both M and M’ accept = (see next
page).
— When this happens, M and M’ accept languages

that are not complements of each other.
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A Nondeterministic Algorithm for Satisfiability

¢ is a boolean formula with n variables.
. for:=1,2,...,ndo
Guess z; € {0, 1}; {Nondeterministic choice.}

. end for
. {Verification:}

44 29

yes g
. else

CCnO” ;

1

2

3

4

5. if ¢(x1,29,...,2,) =1 then
6

7

8:

9: end if
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The Computation Tree for Satisfiability

xSZO

[ bR 11 bR N 11 b 79 &L b2 I 11 bE I 11 LR 11 bE N 11 ?”

N0 yes N0 VeS yeS N0 Nno No  Ves
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Analysis

e The algorithm decides language {¢ : ¢ is satisfiable}.

— The computation tree is a complete binary tree of
depth n.

— Every computation path corresponds to a particular

truth assignment out of 2".

— ¢ is satisfiable if and only if there is a computation

path (truth assignment) that results in “yes.”

e General paradigm: Guess a “proot” and then verify it.
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The Traveling Salesman Problem

We are given n cities 1,2, ...,n and integer distances d;;

between any two cities ¢ and j.
Assume d;; = d;; for convenience.

The traveling salesman problem (TsP) asks for the

total distance of the shortest tour of the cities.

The decision version TSP (D) asks if there is a tour with

a total distance at most B, where B is an input.

Both problems are extremely important but equally
hard (p. 313 and p. 391).
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A Nondeterministic Algorithm for TSP (D)
for:=1,2,...,ndo

Guess z; € {1,2,...,n}; {The ith city.}*
end for

LInt+1 :— T1,
{Verification stage:}

if x1,x2,...,x, are distinct and > 7" | da,, < B then

“yeS” ;

else

“HO” ;

end if

Tit1

1:
2:
3:
4:
:
6:
7
8:
9:

—_
<

@Can be made into a series of log, n binary choices for each z; so
that the next-state count (2) is a constant, independent of input size.
Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Time Complexity under Nondeterminism

e Nondeterministic machine N decides L in time f(n),
where f: N — N, if

— N decides L, and

— for any x € X*, N does not have a computation path

longer than f(|x|).

e We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

e NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

e NTIME(f(n)) is a complexity class.
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NP

NP = | | NTIME(n").
k>0

Clearly P C NP.

Think of NP as efficiently verifiable problems.

— Boolean satisfiability (SAT).

— TSP (D).

The most important open problem in computer science
is whether P = NP.
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Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(c/ ™), where ¢ > 1 is some constant
depending on N.

e On input x, M goes down every computation path of N
using depth-first search (but M does not know f(n)).

— As M is time-bounded, the depth-first search will not
run indefinitely.
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The Proof (concluded)

e If some path leads to “yes,” then M enters the “yes”

state.

e If none of the paths leads to “yes,” then M enters the

“no” state.

Corollary 6 NTIME(f(n))) C .., TIME(c/™).
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NTIME vs. TIME

e Does converting an NTM into a TM require exploring

all the computation paths of the NTM as done in

Theorem 5 (p. 88)7

e This is the most important question in theory with

practical implications.
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Nondeterministic Space Complexity Classes

Let L be a language.

Then
L € NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).
NSPACE(f(n)) is a set of languages.

As in the linear speedup theorem (Theorem 4 on p. 66),

constant coeflicients do not matter.
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Graph Reachability

Let G(V, E) be a directed graph (digraph).

REACHABILITY asks if, given nodes a and b, does G

contain a path from a to b7

Can be easily solved in polynomial time by breadth-first

search.

How about the nondeterministic space complexity?
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The First Try in NSPACE(n logn)
. x1 := a; {Assume a # b.}
: fort=2,3,...,ndo
Guess x; € {v1,v2,...,v,}; {The ith node.}
: end for
. fort=2.3,...,ndo
if (x;_1,%;) ¢ E then

“IIO” ;

end if
if x; = b then

44 79

yes
end if

. end for

. “no” ;
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In Fact REACHABILITY € NSPACE(log n)
T = a;
: fort=2,3,...,ndo
Guess y € {2,3,...,n}; {The next node.}
if (x,y) ¢ E then

CCnO” ;

end if
if y = b then

44 29

yes
end if
T =Y

. end for

“IlO” ;

1:
2

3:
4:
5:
6:
7
8:
9:

—_ =
N 22
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Space Analysis

Variables 7, x, and y each require O(logn) bits.

Testing (x,y) € E is accomplished by consulting the
input string with counters of O(logn) bits long.

Hence

REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node

also has the same complexity.

REACHABILITY € P (p. 181).
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Undecidability
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It seemed unworthy of a grown man
to spend his time on such trivialities,
but what was I to do?

— Bertrand Russell (1872-1970),

Autobiography, Vol. 1
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Infinite Sets

e A set is countable if it is finite or if it can be put in
one-one correspondence with N, the set of natural

numbers.

— Set of integers Z.
* 0—=0,1—=1,2<3,3<95,...,—1 <2, -2«
4, -3 —0,....

Set of positive integers Z*: ¢ — 1 < 1.
Set of odd integers: (i —1)/2 < 1.

Set of rational numbers: See next page.

Set of squared integers: i < V/i.
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Rational Numbers Are Countable

1
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Cardinality
e For any set A, define |A| as A’s cardinality (size).

e T'wo sets are said to have the same cardinality, written

as
Al =|B] or A~ B,

if there exists a one-to-one correspondence between their

elements.

e 24 denotes set A’s power set, that is {B: B C A}.
— If |A| = k, then [24] = 2%,
— So |A] < |24| when A is finite.
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Cardinality (concluded)

|A| < |B| if there is a one-to-one correspondence

between A and one of B’s subsets.
4] < |B| if |A] < |B| but |A| # |B|.
If AC B, then |A| < |B|.

But if A C B, then |A| < |B|?
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Cardinality and Infinite Sets

e If A and B are infinite sets, it is possible that A C B yet
Al = |B|.
— The set of integers properly contains the set of odd
integers.
— But the set of integers has the same cardinality as

the set of odd integers (p. 98).

e A lot of “paradoxes.”
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Hilbert's® Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now let us imagine a hotel with an infinite number of

rooms, and all the rooms are occupied.
A new guest comes and asks for a room.

“But of course!” exclaims the proprietor, and he moves
the person previously occupying Room 1 into Room 2,

the person from Room 2 into Room 3, and so on .. ..

e The new customer occupies Room 1.

aDavid Hilbert (1862-1943).
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Hilbert's Paradox of the Grand Hotel (concluded)

e Let us imagine now a hotel with an infinite number of
rooms, all taken up, and an infinite number of new

guests who come in and ask for rooms.

Y

“Certainly, gentlemen,” says the proprietor, “just wait a

minute.”

He moves the occupant of Room 1 into Room 2, the

occupant of Room 2 into Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

“There are many rooms in my Father’s house, and I am

going to prepare a place for you.” (John 14:3)
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Galileo's* Paradox (1638)

The squares of the positive integers can be placed in

one-to-one correspondence with all the positive integers.

This is contrary to the axiom of Euclid® that the whole

is greater than any of its proper parts.

Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

The difference between a mathematical paradox and a

contradiction is often a matter of opinion.

2Galileo (1564-1642).
PEuclid (325 B.C.-265 B.C.).
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