MIN CUT and MAX CUT A Cut

e A cut in an undirected graph G = (V, E) is a partition

of the nodes into two nonempty sets S and V' — S.

The size of a cut (S,V —S) is the number of edges
between S and V — S.

]
\
\
\
MIN CUT € P by the maxflow algorithm. “
]
:

MAX CUT asks if there is a cut of size at least K.

— K is part of the input.
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MAX CUT Is NP-Complete®

e We will reduce NAESAT to MAX CUT.

MIN CUT and MAX CUT (concluded) e Given an instance ¢ of 3SAT with m clauses, we shall

construct a graph G = (V, E) and a goal K such that:
e MAX CUT has applications in VLSI layout.

— There is a cut of size at least K if and only if ¢ is

— The minimum area of a VLSI layout of a graph is not NAE-satisfiable.

less than the square of its maximum cut size.?

} e Our graph will have multiple edges between two nodes.
aRaspaud, Sykora, and Vrto (1995).

— Each such edge contributes one to the cut if its nodes
are separated.

aGarey, Johnson, and Stockmeyer (1976).
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The Proof

e Suppose ¢’s m clauses are C1,Co, ..., C,,.
e The boolean variables are x1,zs,...,x,.
e (G has 2n nodes: x1,x2,...,Tn, X1, T2, ..., Ty.

e Each clause with 3 distinct literals makes a triangle in G.

For each clause with two identical literals, there are two
parallel edges between the two distinct literals.

No need to consider clauses with one literal (why?).

For each variable x;, add n; copies of edge [x;, ~z;],
where n; is the number of occurrences of x; and —z; in
¢ a

aRegardless of whether both z; and —x; occur in ¢.
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The Proof (continued)
e Set K =b5m.
e Suppose there is a cut (S,V — S) of size 5m or more.
e A clause (a triangle or two parallel edges) contributes at
most 2 to a cut no matter how you split it.
e Suppose both z; and —x; are on the same side of the cut.
e Then they together contribute at most 2n; edges to the
cut as they appear in at most n; different clauses.
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The Proof (continued)

e Changing the side of a literal contributing at most n; to
the cut does not decrease the size of the cut.

e Hence we assume variables are separated from their

negations.

e The total number of edges in the cut that join opposite
literals is ), n; = 3m.

— The total number of literals is 3m.
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The Proof (concluded)

e The remaining 2m edges in the cut must come from the
m triangles or parallel edges that correspond to the

clauses.
e As each can contribute at most 2 to the cut, all are split.

e A split clause means at least one of its literals is true

and at least one false.

e The other direction is left as an exercise.

X

3

o (1 VaaVa)A(x1VxgV-x3)A(—z1 Ve Vxs).

e The cut size is 13 < 5 x 3 = 15.
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o (x1VaaVa)A(xyVxsV-x3)A (- V-xe V).
e The cut size is now 15.
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A Remark MAX BISECTION Is NP-Complete

e We had proved that MAX cUT is NP-complete for We shall reduce the more general MAX CUT to MAX

multigraphs. BISECTION.

Add |V| isolated nodes to G to yield G'.

e How about proving the same thing for simple graphs??

e For 4sAT, how do you modify the proof?® G’ has 2 x |V nodes.

aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
PContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.

As the new nodes have no edges, moving them around
contributes nothing to the cut.
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The Proof (concluded)
e Every cut (S,V —8) of G = (V, E) can be made into a

bisection by appropriately allocating the new nodes

between S and V — S.
MAX BISECTION

) . e Hence each cut of G can be made a cut of G’ of the
e MAX CUT becomes MAX BISECTION if we require that

S| =V =5].

same size, and vice versa.

e It has many applications, especially in VLSI layout.
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BISECTION WIDTH

e BISECTION WIDTH is like MAX BISECTION except that it
asks if there is a bisection of size at most K (sort of MIN

BISECTION).
) HAMILTONIAN PATH Is NP-Complete®

e Unlike MIN CUT, BISECTION WIDTH remains

Theorem 16 Given an undirected graph, the question
NP-complete.

— A graph G = (V, E), where |V| = 2n, has a bisection
of size K if and only if the complement of G has a

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).

bisection of size n? — K.

— So G has a bisection of size > K if and only if its
complement has a bisection of size < n? — K.
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TSP (D) Is NP-Complete

Illustration

Corollary 17 TSP (D) is NP-complete.

e Consider a graph G with n nodes.
o Define d;; =11if [i,j] € Gand d;j; =2if [i,j] € G.
e Set the budget B =n+ 1.

Suppose G has no Hamiltonian paths.

Then every tour on the new graph must contain at least

two edges with weight 2.

— Otherwise, by removing up to one edge with weight

2, one obtains a Hamiltonian path, a contradiction.
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Graph Coloring

e k-COLORING asks if the nodes of a graph can be colored
with < k colors such that no two adjacent nodes have
the same color.

e 2-COLORING is in P (why?).
e But 3-COLORING is NP-complete (see next page).

e k-COLORING is NP-complete for k£ > 3 (why?).
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TSP (D) Is NP-Complete (concluded) 3-COLORING Is NP-Complete®

e The total cost is then at least (n —2)+2-2=n+2 > B. o We will reduce NAESAT to 3-COLORING.

e On the other hand, suppose GG has Hamiltonian paths. o We are given a set of clauses €3, C, ..., Cm cach with 3
literals.
e Then there is a tour on the new graph containing at
e The boolean variables are x1, xo,...,Ty,.

most one edge with weight 2.

e The total cost is then at most (n—1)+2=n+1= B e We shall construct a graph G such that it can be colored

with colors {0, 1,2} if and only if all the clauses can be
e We conclude that there is a tour of length B or less if NAE-satisfied.

and only if G has a Hamiltonian path. “Karp (1972).
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The Proof (continued)

e Every variable x; is involved in a triangle [a, z;, —x; ]
with a common node a.
e Each clause C; = (¢;1 V ¢i2 V ¢;3) is also represented by a
triangle
[C¢170i2767‘,3]~
— Node ¢;; with the same label as one in some triangle

[a, zk, ~x) | represent distinct nodes.

e There is an edge between ¢;; and the node that
represents the jth literal of C;.

The Proof (continued)

Suppose the graph is 3-colorable.

e Assume without loss of generality that node a takes the

color 2.
e A triangle must use up all 3 colors.

e As a result, one of x; and —x; must take the color 0 and
the other 1.
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Construction for - -+ A (21 V g V —xg) A - - -

a 2

The Proof (continued)

e Treat 1 as true and 0 as false.?
— We were dealing only with those triangles with the a

node, not the clause triangles.

e The resulting truth assignment is clearly contradiction
free.

e As each clause triangle contains one color 1 and one
color 0, the clauses are NAE-satisfied.

2The opposite also works.
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The Proof (continued)

Suppose the clauses are NAE-satisfiable.
e Color node a with color 2.

e Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).

— We were dealing only with those triangles with the a

node, not the clause triangles.
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TRIPARTITE MATCHING

e We are given three sets B, G, and H, each containing n

elements.
e Let T'C B x G x H be a ternary relation.

e TRIPARTITE MATCHING asks if there is a set of n triples
in T, none of which has a component in common.
— Each element in B is matched to a different element

in G and different element in H.

Theorem 18 (Karp (1972)) TRIPARTITE MATCHING is
NP-complete.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (concluded)

e For each clause triangle:
— Pick any two literals with opposite truth values.

— Color the corresponding nodes with 0 if the literal is
true and 1 if it is false.

— Color the remaining node with color 2.

e The coloring is legitimate.
— If literal w of a clause triangle has color 2, then its
color will never be an issue.
— If literal w of a clause triangle has color 1, then it
must be connected up to literal w with color 0.
— If literal w of a clause triangle has color 0, then it
must be connected up to literal w with color 1.
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Related Problems

e We are given a family F' = {51, 5s,...,5,} of subsets of
a finite set U and a budget B.

e SET COVERING asks if there exists a set of B sets in F’

whose union is U.
e SET PACKING asks if there are B disjoint sets in F'.
e Assume |U| = 3m for some m € N and |S;| = 3 for all 7.

e EXACT COVER BY 3-SETS asks if there are m sets in F'

that are disjoint and have U as their union.
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 19 SET COVERING, SET PACKING, and EXACT
COVER BY 3-SETS are all NP-complete.

The KNAPSACK Problem

There is a set of n items.

Item 4 has value v; € ZT and weight w; € ZT.

e We are given K € Z* and W € Z™T.

KNAPSACK asks if there exists a subset S C {1,2,...,n}

such that >, qw; <W and ), gv; > K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK Is NP-Complete

KNAPSACK € NP: Guess an S and verify the constraints.

e We assume v; = w; for all i and K = W.

KNAPSACK now asks if a subset of {vy,vs,...,v,} adds
up to exactly K.

— Picture yourself as a radio DJ.

— Or a person trying to control the calories intake.

We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.
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The Proof (continued)
e We are given a family F = {S1,53,...,S,} of size-3
subsets of U = {1,2,...,3m}.
e EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.
e Think of a set as a bit vector in {0,1}3™.

— 001100010 means the set {3,4,8}, and 110010000
means the set {1,2,5}.
3m

—~
e Our goal is 11---1.

The Proof (continued)

e Carry may also lead to a situation where we obtain our
solution 11---1 with more than m sets in F.

— 001100010 + 001110000 + 101100000 + 000001101 =
111111111,

— But this “solution” {1,3,4,5,6,7,8,9} does not
correspond to an exact cover.
— And it uses 4 sets instead of the required 3.*

e To fix this problem, we enlarge the base just enough so
that there are no carries.

e Because there are n vectors in total, we change the base
from 2 to n + 1.

#Thanks to a lively class discussion on November 20, 2002.

92006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 207

The Proof (continued)

e A Dbit vector can also be considered as a binary number.

e Set union resembles addition.
— 001100010 + 110010000 = 111110010, which denotes
the set {1,2,3,4,5,8}, as desired.
e Trouble occurs when there is carry.

— 001100010 + 001110000 = 010010010, which denotes
the set {2,5,8}, not the desired {3,4,5, 8}.

The Proof (continued)

e Set v; to be the (n + 1)-ary number corresponding to the
bit vector encoding S;.
e Now in base n + 1, if there is a set S such that
3m
,d\ . ..
Zvies v; = 11---1, then every bit position must be
contributed by exactly one v; and |S| = m.

e Finally, set
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3m
3m—1
P
K= E (n+1) =11---1 (base n + 1).
Jj=0
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The Proof (continued)

e Suppose F admits an exact cover, say {S1,52,...,Sn}
e Then picking S = {v1,vs,...,0,} clearly results in
3m
—

vi+ve+---+v,=11---1.

— It is important to note that the meaning of addition
(+) is independent of the base.?

— It is just regular addition.

aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3,
2004.
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The Proof (concluded)

e On the other hand, suppose there exists an S such that
3m

—N—
Y vegVi = 11---1in base n + 1.

e The no-carry property implies that |S| = m and

{S; : v; € S} is an exact cover.

An Example
e Let m=3,U=1{1,2,3,4,5,6,7,8,9}, and

Sy = {1,3,4},
Sy = {2,3,4},
S3 = {2,5,6},
Sy = {6,7,8},
Ss = {7,8,9).

e Note that n = 5, as there are 5 S;’s.
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An Example (concluded)

e Our reduction produces

3x3—1 33
. ——
K = > 6 =11---1 (base6),
j=0
vy = 101100000,
v2 = 011100000,
vy = 010011000,
ve = 000001110,
vs = 000000111,

e Note v1 +v3 +v5 = K.

e Indeed, S;US3U S5 ={1,2,3,4,5,6,7,8,9}, an exact
cover by 3-sets.
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BIN PACKINGS

e We are given N positive integers ai,as,...,ay, an
integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned
into B subsets, each of which has total sum at most C.

e Think of packing bags at the check-out counter.

Theorem 20 BIN PACKING is NP-complete.
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Finis
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