
Completenessa

• As reducibility is transitive, problems can be ordered

with respect to their difficulty.

• Is there a maximal element?

• It is not altogether obvious that there should be a

maximal element.

• Many infinite structures (such as integers and reals) do

not have maximal elements.

• Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

aCook (1971).
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Completeness (concluded)

• Let C be a complexity class and L ∈ C.

• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have

complete problems!

• Complete problems capture the difficulty of a class

because they are the hardest.
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Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.

• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.
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Illustration of Completeness and Hardness
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Closedness under Reduction

• A class C is closed under reductions if whenever L is

reducible to L′ and L′ ∈ C, then L ∈ C.

• P, NP, and EXP are all closed under reductions.
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Complete Problems and Complexity Classes

Proposition 10 Let C′ and C be two complexity classes such

that C′ ⊆ C. Assume C′ is closed under reductions and L is a

complete problem for C. Then C = C′ if and only if L ∈ C′.

• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.

• Because C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• As C′ ⊆ C, we conclude that C = C′.
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The Proof (concluded)

• On the other hand, suppose C = C′.

• As L is C-complete, L ∈ C.

• Thus, trivially, L ∈ C′.
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Two Immediate Corollaries

Proposition 10 implies that

• P = NP if and only if an NP-complete problem in P.

• L = P if and only if a P-complete problem is in L.
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Table of Computation

• Let M = (K, Σ, δ, s) be a single-string polynomial-time

deterministic TM deciding L.

• Its computation on input x can be thought of as a

|x |k × |x |k table, where |x |k is the time bound (recall

that it is an upper bound).

– It is a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of

position j of the string after i steps of computation.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128



Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

– The string length hence never exceeds |x |k.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔

s so that each row has length |x |k.

– The computation will never reach the right end of

the table for lack of time.

• If the cursor scans the jth position at time i when M is

at state q and the symbol is σ, then the (i, j)th entry is

a new symbol σq.
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Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of

σq.

• Modify M so that the cursor starts not at � but at the

first symbol of the input.

• The cursor never visits the leftmost � by telescoping

two moves of M each time the cursor is about to move

to the leftmost �.

• So the first symbol in every row is a � and not a �q.
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Some Conventions To Simplify the Table (concluded)

• If M has halted before its time bound of |x |k, so that

“yes” or “no” appears at a row before the last, then all

subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is

“yes” for some j.
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Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k

︷ ︸︸ ︷

�0s10001

⊔ ⊔

· · ·

⊔

• A typical row may be

| x |k

︷ ︸︸ ︷

�10100q01110100

⊔ ⊔

· · ·

⊔

• The last rows must look like

|x |k

︷ ︸︸ ︷

� · · · “yes” · · ·
⊔
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A P-Complete Problem

Theorem 11 (Ladner (1975)) circuit value is

P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such

that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.
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The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of

Tij is known.

– The jth symbol of x or
⊔

, a �, and a
⊔

, respectively.

– Three out of four of T ’s borders are known.

#��D��E��F��G��H��I���#

#

�

�
# �# �
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The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j, and Ti−1,j+1.

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on

the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, where

m = ⌈log2 |Γ |⌉

(state assignment in circuit design).
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The Proof (continued)

• Let binary string Sij1Sij2 · · ·Sijm encode Tij.

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries

Sijℓ, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ℓ ≤ m.
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The Proof (continued)

• Each bit Sijℓ depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j: Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• So there are m boolean functions F1, F2, . . . , Fm with

3m inputs each such that for all i, j > 0,

Sijℓ = Fℓ(Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m).
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The Proof (continued)

• These Fi’s depend on only M ’s specification, not on x.

• Their sizes are fixed.

• These boolean functions can be turned into boolean

circuits.

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j, Ti−1,j+1) = Tij .

– C is like an ASIC (application-specific IC) chip.
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Circuit C
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The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme

columns.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output

“yes”/“no” (coded as 1/0) appear at position

(|x |k − 1, 1).
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The Computation Tableau and R(x)

#��D��E��F��G��H��I���
#
#

�
�
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Cook’s Theorem: the First NP-Complete Problem

Theorem 12 (Cook (1971)) sat is NP-complete.

• sat ∈ NP (p. 51).

• circuit sat reduces to sat (p. 116).

• Now we only need to show that all languages in NP can

be reduced to circuit sat.
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The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that

x ∈ L if and only if R(x) is satisfiable.

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c|x |k−1) ∈ {0, 1}|x |k−1.

• Once B is fixed, the computation is deterministic.
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The Proof (continued)

• Each choice of B results in a deterministic

polynomial-time computation, hence a table like the one

on p. 141.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:

C(Ti−1,j−1, Ti−1,j, Ti−1,j+1, c) = Tij .

C


c


c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 144



The Computation Tableau for NTMs and R(x)
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The Proof (concluded)

• The overall circuit R(x) (on p. 145) is satisfiable if there

is a truth assignment B such that the computation table

accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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NP-Complete Problems
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Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)
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3sat

• k-sat, where k ∈ Z
+, is the special case of sat.

• The formula is in CNF and all clauses have exactly k

literals (repetition of literals is allowed).

• For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
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3sat Is NP-Complete

• Recall Cook’s Theorem (p. 142) and the reduction of

circuit sat to sat (p. 116).

• The resulting CNF has at most 3 literals for each clause.

– This shows that 3sat where each clause has at most

3 literals is NP-complete.

• Finally, duplicate one literal once or twice to make it a

3sat formula.
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Another Variant of 3sat

Proposition 13 3sat is NP-complete for expressions in

which each variable is restricted to appear at most three

times, and each literal at most twice. (3sat here requires

only that each clause has at most 3 literals.)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by

x2, and so on, where x1, x2, . . . , xk are k new variables.
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The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the

expression.

– This is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– Note that each clause above has fewer than 3 literals.

• The resulting equivalent expression satisfies the

condition for x.
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An Example

• Suppose we are given the following 3sat expression

· · · (¬x ∨ w ∨ g) ∧ · · · ∧ (x ∨ y ∨ z) · · · .

• The transformed expression is

· · · (¬x1∨w∨g)∧· · ·∧(x2∨y∨z) · · · (¬x1∨x2)∧(¬x2∨x1).

– Variable x1 appears thrice.

– Literal x1 appears once.

– Literal ¬x1 appears twice.
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naesat

• The naesat (for “not-all-equal” sat) is like 3sat.

• But we require additionally that there be a satisfying

truth assignment under which no clauses have the three

literals equal in truth value.

– Each clause must have one literal assigned true and

one literal assigned false.
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naesat Is NP-Completea

• Recall the reduction of circuit sat to sat on p. 116.

• It produced a CNF φ in which each clause has at most 3

literals.

• Add the same variable z to all clauses with fewer than 3

literals to make it a 3sat formula.

• Goal: The new formula φ(z) is nae-satisfiable if and

only if the original circuit is satisfiable.

aKarp (1972).
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The Proof (continued)

• Suppose T nae-satisfies φ(z).

– T̄ also nae-satisfies φ(z).

– Under T or T̄ , variable z takes the value false.

– This truth assignment must still satisfy all clauses of

φ.

– So it satisfies the original circuit.
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The Proof (concluded)

• Suppose there is a truth assignment that satisfies the

circuit.

– Then there is a truth assignment T that satisfies

every clause of φ.

– Extend T by adding T (z) = false to obtain T ′.

– T ′ satisfies φ(z).

– So in no clauses are all three literals false under T ′.

– Under T ′, in no clauses are all three literals true.

∗ Review the detailed construction on p. 117 and

p. 118.
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Undirected Graphs

• An undirected graph G = (V, E) has a finite set of

nodes, V , and a set of undirected edges, E.

• It is like a directed graph except that the edges have no

directions and there are no self-loops.

• We use [ i, j ] to denote the fact that there is an edge

between node i and node j.
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Independent Sets

• Let G = (V, E) be an undirected graph.

• I ⊆ V .

• I is independent if whenever i, j ∈ I, there is no edge

between i and j.

• The independent set problem: Given an undirected

graph and a goal K, is there an independent set of size

K?

– Many applications.
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independent set Is NP-Complete

• This problem is in NP: Guess a set of nodes and verify

that it is independent and meets the count.

• If a graph contains a triangle, any independent set can

contain at most one node of the triangle.

• We consider graphs whose nodes can be partitioned in m

disjoint triangles.

– If the special case is hard, the original problem must

be at least as hard.
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Reduction from 3sat to independent set

• Let φ be an instance of 3sat with m clauses.

• We will construct graph G (with constraints as said)

with K = m such that φ is satisfiable if and only if G

has an independent set of size K.

• There is a triangle for each clause with the literals as the

nodes.

• Add additional edges between x and ¬x for every

variable x.
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A Sample Construction

»�[�

»�[� »�[�

[�

[� [�

»�[�

[� [�

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 162



The Proof (continued)

• Suppose G has an independent set I of size K = m.

– An independent set can contain at most m nodes,

one from each triangle.

– An independent set of size m exists if and only if it

contains exactly one node from each triangle.

– Truth assignment T assigns true to those literals in I.

– T is consistent because contradictory literals are

connected by an edge, hence not both in I.

– T satisfies φ because it has a node from every

triangle, thus satisfying every clause.
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The Proof (concluded)

• Suppose a satisfying truth assignment T exists for φ.

– Collect one node from each triangle whose literal is

true under T .

– The choice is arbitrary if there is more than one true

literal.

– This set of m nodes must be independent by

construction.

∗ Literals x and ¬x cannot be both assigned true.
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clique

• We are given an undirected graph G and a goal K.

• clique asks if there is a set C with K nodes such that

whenever i, j ∈ C, there is an edge between i and j.
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clique Is NP-Complete

Corollary 14 clique is NP-complete.

• Let Ḡ be the complement of G, where [x, y] ∈ Ḡ if and

only if [x, y] 6∈ G.

• I is an independent set in G ⇔ I is a clique in Ḡ.
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node cover

• We are given an undirected graph G and a goal K.

• node cover asks if there is a set C with K or fewer

nodes such that each edge of G has at least one of its

endpoints in C.
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node cover Is NP-Complete

Corollary 15 node cover is NP-complete.

• I is an independent set of G = (V, E) if and only if

V − I is a node cover of G.

I
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