Truth Assignments

e A truth assignment 7' is a mapping from boolean
variables to truth values true and false.

Boolean LOgiC e A truth assignment is appropriate to boolean
expression ¢ if it defines the truth value for every
variable in ¢.

— {1 = true, xo = false} is appropriate to x1 V 5.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Boolean Logic®

Boolean variables: z1,zo,....))
Satisfaction
Literals: x;, —x;.

. e T E ¢ means boolean expression ¢ is true under T'; in
Boolean connectives: V, A, —. .
other words, T satisfies ¢.

Boolean expressions: Boolean variables, ¢ (negation),

1V ¢2 (disjunction), ¢1 A ¢2 (conjunction). * ¢1 and ¢; are equivalent, written

o \/©"_ | ¢ stands for ¢1 V g2 V -+ V . b1 = o,

o A . ¢; stands for ¢1 A da A+ A .
Niea @ 1A 2 ¢ if for any truth assignment 7' appropriate to both of

Implications: ¢1 = ¢2 is a shorthand for —¢1 V ¢2. them, T = ¢1 if and only if T |= ¢s.

Biconditionals: ¢1 < ¢2 is a shorthand for — Equivalently, T = (¢1 < ¢2).
(@1 = ¢2) A (¢2 = ¢1).

2Boole (1815-1864) in 1847.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page T4 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

Truth Tables

e Suppose ¢ has n boolean variables.

e A truth table contains 2" rows, one for each possible
truth assignment of the n variables together with the

truth value of ¢ under that truth assignment.
e A truth table can be used to prove if two boolean
expressions are equivalent.

— Check if they give identical truth values under all 2™

truth assignments.

De Morgan's® Laws

e De Morgan’s laws say that

(p1 Ag2) = 91V g,
“(P1Vd2) = —p1 Aga.

e Here is a proof for the first law:

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

$1 @2 | (1 Ad2) d1V g
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0
aAugustus DeMorgan (1806-1871).
©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

A Truth Table

P q|pNg
0 0] o
0 1 0
1 0 0
11 1

Conjunctive Normal Forms

e A boolean expression ¢ is in conjunctive normal
form (CNF) if

n
o= N\Ci,
i=1
where each clause C} is the disjunction of one or more
literals.
e For example, (21 V22) A (21 V —x2) A (22 V 23) is in CNF.

e Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

Disjunctive Normal Forms

e A boolean expression ¢ is in disjunctive normal form
(DNF) if

¢ = \/ Di>
i=1

where each implicant D; is the conjunction of one or

more literals.
e For example,
(581 AN $2) V (581 A _\.1‘2) V (wg N .1‘3)

is a DNF.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81

Any Expression ¢ Can Be Converted into CNFs and DNFs
(concluded)

¢ = ¢1 A ¢ and a CNF is sought: Make ¢ and ¢o
CNFs.

b= ¢1 A ¢2 and a DNF is sought: Let ¢; =/, 4; and
= V72, B; be CNFs. Set

ni n2

¢=\\(4iABj)

i=1j=1

Any Expression ¢ Can Be Converted into CNFs and DNFs
¢ = x;: This is trivially true.
¢ = ¢ and a CNF is sought: Turn ¢; into a DNF and
apply de Morgan’s laws to make a CNF for ¢.

¢ = ¢ and a DNF is sought: Turn ¢; into a CNF and
apply de Morgan’s laws to make a DNF for ¢.

¢ = ¢1 VP and a DNF is sought: Make ¢; and ¢4
DNFs.
o= qbl V ¢2 and a CNF is sought: Let ¢; = A%, A; and
= A2, B; be CNFs. Set

niy n2

o=\ NAVB)

i=1j=1

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83
An Example: Turn =((a Ay) V (2 Vw)) into a DNF
“((any) Vv (zVw))
—(CNFVC
D (@) A @) V(2 v w)
—(C
() =((aVzVw)A(yVzVw))
de Morgan (=(aVzVw)V-a(yVzVw))
= ((ma A=z A—w)V (my A—z A -w)).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84

Satisfiability

e A boolean expression ¢ is satisfiable if there is a truth
assignment T' appropriate to it such that 7' = ¢.

e ¢ is valid or a tautology,* written = ¢, if T = ¢ for all
T appropriate to ¢.

e ¢ is unsatisfiable if and only if ¢ is false under all

appropriate truth assignments if and only if —¢ is valid.

aWittgenstein (1889-1951) in 1922. Wittgenstein is one of the
most important philosophers of all time. “God has arrived,” the great
economist Keynes (1883-1946) said of him on January 18, 1928. “I met
him on the 5:15 train.”

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT)
and VALIDITY

® UNSAT (SAT COMPLEMENT): Given a boolean expression
¢, is it unsatisfiable?

e VALIDITY: Given a boolean expression ¢, is it valid?
— ¢ is valid if and only if —¢ is unsatisfiable.
— So UNSAT and VALIDITY have the same complexity.

e Both are solvable in time O(n?2") on a TM by the truth
table method.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

SATISFIABILITY (SAT)

e The length of a boolean expression is the length of the
string encoding it.

® SATISFIABILITY (SAT): Given a CNF ¢, is it satisfiable?

e Solvable in time O(n?2") on a TM by the truth table
method.

e Solvable in polynomial time on an NTM, hence in NP
(p. b1).

e A most important problem in answering the P = NP
problem (p. 142).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 87

Relations among SAT, UNSAT, and VALIDITY

T

Valid Unsatisfiable

v

e The negation of an unsatisfiable expression is a valid

expression.

e None of the three problems—satisfiability,
unsatisfiability, validity—are known to be in P.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 88

Boolean Functions (concluded)
Boolean Functions

L . 1 w2 | f(21,22)
e An n-ary boolean function is a function P .
f: {true, false}" — {true,false}. 0 1 1
e It can be represented by a truth table. 1 0 0
1 1 1

n .
e There are 22" such boolean functions.

— Each of the 2" truth assignments can make f true or The corresponding boolean expression:

false. (=1 A —x2) V (mx Axg) V(21 A x2).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 89 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 91

Boolean Functions (continued)

e A boolean expression expresses a boolean function. Boolean Circuits

A boolean circuit is a graph C whose nodes are the

— Think of its truth value under all truth assignments.

. . gates.
e A boolean function expresses a boolean expression.

There are no cycles in C.
- \/T = ¢, literal y; is true under T(y1 NN yn) Y

% Y1 A+ Ay, is the minterm over {z1,...,z,} for
T. equal to 0, 1, or 2.

— The length® is < n2" < 227,

All nodes have indegree (number of incoming edges)

Each gate has a sort from

— In general, the exponential length in n cannot be
. {true, false,V, A, 1, 21, 22,...}.
avoided!

2We count the logical connectives here.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 92

Boolean Circuits (concluded)

Gates of sort from {true,false,z1,x2,...} are the
inputs of C' and have an indegree of zero.

The output gate(s) has no outgoing edges.

e A boolean circuit computes a boolean function.

The same boolean function can be computed by
infinitely many boolean circuits.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 93

Boolean Circuits and Expressions
e They are equivalent representations.

e One can construct one from the other:

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 94

An Example

((x,0x,)0, 0x,y)) O (= (x;0x,))
O

N
AL
W

e Circuits are more economical because of the possibility
of sharing,.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 95

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment
such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the
circuit has no variable gates.

e CIRCUIT SAT € NP: Guess a truth assignment and then
evaluate the circuit.

e CIRCUIT VALUE € P: Evaluate the circuit from the input
gates gradually towards the output gate.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 96

Important Time Complexity Classes (concluded)
P = TIME(®n"),
NP = NTIME(n"),
Relations between Complexity Classes E — TIME(2"),
EXP = TIME(@2"),
2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 97 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 99
Important Time Complexity Classes
e We write expressions like n* to denote the union of all
complexity classes, one for each value of k.
e For example, Reductions and Completeness

NTIME(n*) = |] NTIME(n/).
3>0

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 98 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 100

Degrees of Difficulty
e When is a problem more difficult than another?
e B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(z) of A.

— The answer to x for B is the same as the answer to
R(z) for A.

— There must be restrictions on the complexity of
computing R.
— Otherwise, R(z) might as well solve B.

Reduction

X RX) |algorithm| | Yesno
7| forA g

v
A

Solving problem B by calling the algorithm for problem once

and without further processing its answer.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 101

Degrees of Difficulty (concluded)

e Problem A is at least as hard as problem B if B reduces
to A.

e This makes intuitive sense: If A is able to solve your

problem B, then A must be at least as powerful.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103

Comments?

Suppose B reduces to A via a transformation R.

The input x is an instance of B.

The output R(x) is an instance of A.
e R(x) may not span all possible instances of A.

e So some instances of A may never appear in the

reduction.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,
2003.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 102

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 104

Reduction between Languages Reduction of HAMILTONIAN PATH to SAT

e Language L, is reducible to L, if there is a function R e Given a graph G, we shall construct a CNF R(G) such
computable by a deterministic TM in polynomial time. that R(G) is satisfiable if and only if G has a

e Furthermore, for all inputs z, x € L; if and only if Hamiltonian path.
R(z) € Ls. e R(G) has n? boolean variables z;;, 1 <i,j < n.

e R is said to be a reduction from L; to L. e 1;; means

e If R is a reduction from L; to Lo, then R(z) € Lo is a the ith position in the Hamiltonian path is
legitimate algorithm for = € L. occupied by node j.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 107

HAMILTONIAN PATH

e A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

e Suppose graph G has n nodes: 1,2,...,n.

e A Hamiltonian path can be expressed as a permutation
mof {1,2,...,n} such that
— m(i) = j means the ith position is occupied by node j.

— (n(i),7(t+1))eGfori=1,2,...,n— 1

e HAMILTONIAN PATH asks if a graph has a Hamiltonian

T1o = To] = T34 = Ty5 = Ts3 = L9 = L76 = Ly — Lg7 — 1.
path. 12 21 34 45 53 69 76 88 97

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 108

The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

e x1; Vx2; V-V ay; for each j.
2. No node j appears twice in the path.
o —x;; V —xyy for all ¢, 5, k with ¢ # k.
3. Every position ¢ on the path must be occupied.
o x;1 VxiaV---Vuax, for each i.
4. No two nodes j and k occupy the same position in the path.
e —x;; V —wyy for all 4, j, k with j # k.
5. Nonadjacent nodes ¢ and j cannot be adjacent in the path.

o Xy V Xyt forall (4,5) € Gand k=1,2,...,n— 1.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109

The Proof
e R(G) contains O(n?) clauses.
e R(G) can be computed efficiently (simple exercise).
e Suppose T = R(G).

e From Clauses of 1 and 2, for each node j there is a
unique position i such that 7' = x;;.
e From Clauses of 3 and 4, for each position ¢ there is a

unique node j such that T' = x;;.

e So there is a permutation 7 of the nodes such that
7(i) = j if and only if T' |= x;;.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110

The Proof (concluded)

e Clauses of 5 furthermore guarantees that
(m(1),m(2),...,m(n)) is a Hamiltonian path.

e Conversely, suppose G has a Hamiltonian path

where 7 is a permutation.

e (learly, the truth assignment
T(z;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111

A Comment?®

e An answer to “Is R(G) is satisfiable?” does answer “Is
G Hamiltonian?”

e But a positive answer does not give a Hamiltonian path

for G.

— Providing witness is not a requirement of reduction.
e A positive answer to “Is R(G) is satisfiable?” plus a

satisfying truth assignment does provide us with a

Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112

. Th nstruction
Reduction of REACHABILITY to CIRCUIT VALUE e Constructio

e Note that both problems are in P e h;ji is an AND gate with predecessors g; x.x—1 and
Ok,j.k—1, Where k = 1,2,...,n.
e Given a graph G = (V, E), we shall construct a

variable-free circuit R(G). ® gk is an OR gate with predecessors g; jr—1 and h; j «,

where k =1,2,...,n.
e The output of R(G) is true if and only if there is a path _—
from node 1 to node n in G. ® 9inn 15 the output gate.

e Tdea: the Floyd-Warshall algorithm. ° Ir.ltere.szmgly, R(G) uses no — gates: It is a monotone
circuit.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 113 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115

The Gates Reduction of CIRCUIT SAT to SAT

e Given a circuit C', we shall construct a boolean
expression R(C) such that R(C) is satisfiable if and only
if C' is satisfiable.

— R(C) will turn out to be a CNF.

The gates are
— gijr With 1 <4, <mnand 0 <k < n.
- hijk with 1 S i,j,k S n.

gijr: There is a path from node i to node j without e The variables of R(C) are those of C plus g for each

passing through a node bigger than k. sate g of O

hijk: There i th f de it de j passi . . .
vijk Cre 15 & pathl frot hode @ 30 Node J passing e Each gate of C will be turned into equivalent clauses of

through k& but not any node bigger than k. R(C).

Input gate gijo = true if and only if i = j or (i, j) € E. e Recall that clauses are A-ed together.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 114 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116

The Clauses of R(C)

g is a variable gate z: Add clauses (—g V x) and (g V —x).
e Meaning: g & x.
g is a true gate: Add clause (g).

e Meaning: g must be true to make R(C') true.

Composition of Reductions

Proposition 9 If Ry is a reduction from Ly to Lo and Ras

1 a reduction from Lo to Ls, then the composition Rqis o Rog

1 a reduction from Ly to Ls.
g is a false gate: Add clause (—g).

e Clearly z € L, if and only if Rog(Ri2(x)) € Ls.
e Meaning: g must be false to make R(C') true.

e It is also clear that R15 o Ro3 can be computed in

g is a = gate with predecessor gate h: Add clauses polynomial time.

(mg VvV —h) and (g V h).
e Meaning: g & —h.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119

The Clauses of R(C') (concluded)

g is a V gate with predecessor gates h and h': Add
clauses (-h V g), (=h'V g), and (b V h' V —g).
e Meaning: g < (hV 1).
g is a A gate with predecessor gates h and h': Add
clauses (mg V h), (mg V /'), and (=h V —=h'V g).
e Meaning: g < (h AR).
g is the output gate: Add clause (g).

e Meaning: g must be true to make R(C') true.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118

