
Boolean Logic
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

•
∨n

i=1
φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

•
∧n

i=1
φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aBoole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression φ if it defines the truth value for every

variable in φ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Satisfaction

• T |= φ means boolean expression φ is true under T ; in

other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of

them, T |= φ1 if and only if T |= φ2.

– Equivalently, T |= (φ1 ⇔ φ2).
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Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows, one for each possible

truth assignment of the n variables together with the

truth value of φ under that truth assignment.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Check if they give identical truth values under all 2n

truth assignments.
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A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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De Morgan’sa Laws

• De Morgan’s laws say that

¬(φ1 ∧ φ2) = ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) = ¬φ1 ∧ ¬φ2.

• Here is a proof for the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871).
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Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal

form (CNF) if

φ =
n∧

i=1

Ci,

where each clause Ci is the disjunction of one or more

literals.

• For example, (x1 ∨x2)∧ (x1 ∨¬x2)∧ (x2 ∨x3) is in CNF.

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.
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Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form

(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of one or

more literals.

• For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3)

is a DNF.
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Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj: This is trivially true.

φ = ¬φ1 and a CNF is sought: Turn φ1 into a DNF and

apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought: Turn φ1 into a CNF and

apply de Morgan’s laws to make a DNF for φ.

φ = φ1 ∨ φ2 and a DNF is sought: Make φ1 and φ2

DNFs.

φ = φ1 ∨ φ2 and a CNF is sought: Let φ1 =
∧n1

i=1 Ai and

φ2 =
∧n2

i=1 Bi be CNFs. Set

φ =

n1∧

i=1

n2∧

j=1

(Ai ∨ Bj).
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Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought: Make φ1 and φ2

CNFs.

φ = φ1 ∧ φ2 and a DNF is sought: Let φ1 =
∨n1

i=1 Ai and

φ2 =
∨n2

i=1 Bi be CNFs. Set

φ =

n1∨

i=1

n2∨

j=1

(Ai ∧ Bj).
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An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))

¬(CNF∨CNF)
= ¬(((a) ∧ (y)) ∨ (z ∨ w))

¬(CNF)
= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))

de Morgan
= (¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w))

= ((¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w)).
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Satisfiability

• A boolean expression φ is satisfiable if there is a truth

assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all

T appropriate to φ.

• φ is unsatisfiable if and only if φ is false under all

appropriate truth assignments if and only if ¬φ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.”

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in time O(n22n) on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP

(p. 51).

• A most important problem in answering the P = NP

problem (p. 142).
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unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– So unsat and validity have the same complexity.

• Both are solvable in time O(n22n) on a TM by the truth

table method.
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Relations among sat, unsat, and validity

9DOLG 8QVDWLVILDEOH

• The negation of an unsatisfiable expression is a valid

expression.

• None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.
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Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22n

such boolean functions.

– Each of the 2n truth assignments can make f true or

false.
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Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true under T (y1 ∧ · · · ∧ yn).

∗ y1 ∧ · · · ∧ yn is the minterm over {x1, . . . , xn} for

T .

– The lengtha is ≤ n2n ≤ 22n.

– In general, the exponential length in n cannot be

avoided!

aWe count the logical connectives here.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90

Boolean Functions (concluded)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).
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Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.
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Boolean Circuits (concluded)

• Gates of sort from {true, false, x1, x2, . . .} are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by

infinitely many boolean circuits.
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Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬�[L
¬

[L

[L ∨�[M
∨

[L [M

[L ∧�[M
∧

[L [M
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An Example

��[�∧�[���∧�[�∨�[����∨ (¬�[�∨�[���

∧

[� [� [�
∨

[�

¬∧

∨

• Circuits are more economical because of the possibility

of sharing.
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circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.
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Relations between Complexity Classes
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Important Time Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).
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Important Time Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

E = TIME(2kn),

EXP = TIME(2nk

),
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Reductions and Completeness
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Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for

every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to

R(x) for A.

– There must be restrictions on the complexity of

computing R.

– Otherwise, R(x) might as well solve B.
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Degrees of Difficulty (concluded)

• Problem A is at least as hard as problem B if B reduces

to A.

• This makes intuitive sense: If A is able to solve your

problem B, then A must be at least as powerful.
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Reduction

x
 yes/no
R
(
x
)

R


algorithm

for A


Solving problem B by calling the algorithm for problem once

and without further processing its answer.
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Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.

• So some instances of A may never appear in the

reduction.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
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Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in polynomial time.

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a reduction from L1 to L2.

• If R is a reduction from L1 to L2, then R(x) ∈ L2 is a

legitimate algorithm for x ∈ L1.
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hamiltonian path

• A Hamiltonian path of a graph is a path that visits

every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation

π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i + 1)) ∈ G for i = 1, 2, . . . , n − 1.

• hamiltonian path asks if a graph has a Hamiltonian

path.
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Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such

that R(G) is satisfiable if and only if G has a

Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is

occupied by node j.
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1


2

3


4


5

6


7
8

9


x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1.
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The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj for all i, j, k with i 6= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik for all i, j, k with j 6= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) 6∈ G and k = 1, 2, . . . , n − 1.
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The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From Clauses of 1 and 2, for each node j there is a

unique position i such that T |= xij .

• From Clauses of 3 and 4, for each position i there is a

unique node j such that T |= xij .

• So there is a permutation π of the nodes such that

π(i) = j if and only if T |= xij .
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The Proof (concluded)

• Clauses of 5 furthermore guarantees that

(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).
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A Commenta

• An answer to “Is R(G) is satisfiable?” does answer “Is

G Hamiltonian?”

• But a positive answer does not give a Hamiltonian path

for G.

– Providing witness is not a requirement of reduction.

• A positive answer to “Is R(G) is satisfiable?” plus a

satisfying truth assignment does provide us with a

Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V, E), we shall construct a

variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.
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The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without

passing through a node bigger than k.

• hijk: There is a path from node i to node j passing

through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.
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The Construction

• hijk is an and gate with predecessors gi,k,k−1 and

gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,

where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates: It is a monotone

circuit.
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Reduction of circuit sat to sat

• Given a circuit C, we shall construct a boolean

expression R(C) such that R(C) is satisfiable if and only

if C is satisfiable.

– R(C) will turn out to be a CNF.

• The variables of R(C) are those of C plus g for each

gate g of C.

• Each gate of C will be turned into equivalent clauses of

R(C).

• Recall that clauses are ∧-ed together.
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The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).

• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).

• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses

(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.
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The Clauses of R(C) (concluded)

g is a ∨ gate with predecessor gates h and h′: Add

clauses (¬h ∨ g), (¬h′ ∨ g), and (h ∨ h′ ∨ ¬g).

• Meaning: g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h), (¬g ∨ h′), and (¬h ∨ ¬h′ ∨ g).

• Meaning: g ⇔ (h ∧ h′).

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.
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Composition of Reductions

Proposition 9 If R12 is a reduction from L1 to L2 and R23

is a reduction from L2 to L3, then the composition R12 ◦ R23

is a reduction from L1 to L3.

• Clearly x ∈ L1 if and only if R23(R12(x)) ∈ L3.

• It is also clear that R12 ◦ R23 can be computed in

polynomial time.
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