More Undecidability
e {M : M halts on all inputs}.

Given M;x, we construct the following machine:
x M, (y) :if y = x then M (x) else halt.

M, halts on all inputs if and only if M halts on z.

— So if the said language were recursive, H would be

recursive, a contradiction.

This technique is called reduction.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 67

Reductions in Proving Undecidability
e Suppose we are asked to prove L is undecidable.
e Language H is known to be undecidable.

e We try to find a computable transformation (or
reduction) R such that that®

Va(R(z) € L if and only if x € H).

e This suffices to prove that L is undecidable.

2Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 68

Complements of Recursive Languages
Lemma 6 If L is recursive, then so is L.
e Let L be decided by M (which is deterministic).
e Swap the “yes” state and the “no” state of M.

e The new machine decides L.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 69

Recursive and Recursively Enumerable Languages

Lemma 7 L is recursive if and only if both L and L are

recursively enumerable.

e Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

e Simulate M and M in an interleaved fashion.
o If M accepts, then z € L and M’ halts on state “yes.”

o If M accepts, then x ¢ L and M’ halts on state “no.”

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 70

RE

coRE

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 71

Boolean Logic

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 72

Boolean Logic?®
Boolean variables: zi,z2,....
Literals: z;, —x;.
Boolean connectives: V, A, .

Boolean expressions: Boolean variables, —¢ (negation),
@1V ¢2 (disjunction), ¢1 A ¢2 (conjunction).

o /', ¢ stands for ¢p1V o V-V n.

o A, ¢ stands for ¢p1 Ada A+ A dn.
Implications: ¢1 = ¢2 is a shorthand for =¢; V ¢2.
Biconditionals: ¢; < ¢2 is a shorthand for

(1 = ¢2) A (d2 = ¢1).
2Boole (1815-1864) in 1847.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 73

Truth Assignments

e A truth assignment 7T is a mapping from boolean
variables to truth values true and false.

e A truth assignment is appropriate to boolean
expression ¢ if it defines the truth value for every
variable in ¢.

— {1 = true,xo = false} is appropriate to x; V 3.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 74

Satisfaction

e T |= ¢ means boolean expression ¢ is true under T’; in
other words, T satisfies ¢.

e ¢ and ¢ are equivalent, written

1 = @2,
if for any truth assignment 7" appropriate to both of
them, T |= ¢4 if and only if T = ¢o.
— Equivalently, T |= (¢1 < ¢2).

A Truth Table

p a|phq
0 0] o
0 1| 0
10| o
11|

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Truth Tables

e Suppose ¢ has n boolean variables.

e A truth table contains 2" rows, one for each possible
truth assignment of the n variables together with the
truth value of ¢ under that truth assignment.

e A truth table can be used to prove if two boolean

expressions are equivalent.

truth assignments.

— Check if they give identical truth values under all 2"

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 76 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77
De Morgan's* Laws
e De Morgan’s laws say that
(1 Ap2) = —d1V g,
(1 Vd2) = —P1 Ao
e Here is a proof for the first law:
¢1 P2 | (D1 AP2) —h1V e
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0
aAugustus DeMorgan (1806-1871).
Page 78

Conjunctive Normal Forms Any Expression ¢ Can Be Converted into CNFs and DNFs

e A boolean expression ¢ is in conjunctive normal ¢ = x;: This is trivially true.
form (CNF) if ¢ = —¢, and a CNF is sought: Turn ¢, into a DNF and apply
n
de Morgan’s laws to make a CNF for ¢.
o= N\Ci &
i=1 ¢ = ¢ and a DNF is sought: Turn ¢; into a CNF and apply
where each clause C; is the disjunction of one or more de Morgan’s laws to make a DNF for ¢.
literals. ¢ = 61V ¢» and a DNF is sought: Make ¢ and ¢o DNFs.
e For example, (z1V x2) A (21 V —~x2) A (22 V 23) is in CNF. ¢ = ¢1 V ¢ and a CNF is sought: Let ¢1 = A", A; and
. n2 . . ni n2 . .
e Convention: An empty CNF is satisfiable, but a CNF ¢2 = \;Z, Bi be CNFs. Set ¢ = A2, Aj2,(Ai V Bj).
containing an empty clause is not. @ = ¢1 A ¢2: Similar to above.
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81
Disjunctive Normal Forms Satisfiability
e A boolean expression ¢ is in disjunctive normal form e A boolean expression ¢ is satisfiable if there is a truth
(DNF) if assignment T appropriate to it such that T' = ¢.
n
¢ = \/ D;, e ¢ is valid or a tautology,* written = ¢, if T |= ¢ for all
i=1

T appropriate to ¢.

where each implicant D; is the conjunction of one or

more literals, e ¢ is unsatisfiable if and only if ¢ is false under all

appropriate truth assignments if and only if —¢ is valid.
e For example,

aWittgenstein (1889-1951) in 1922. Wittgenstein is one of the

(«'El A x2) \/ (IEI A _.xz) \Vi (x2 A 1'3) most important philosophers of all time. “God has arrived,” the great
economist Keynes (1883-1946) said of him on January 18, 1928. “I met
is in DNF. him on the 5:15 train.”

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82

SATISFIABILITY (SAT) Relations among SAT, UNSAT, and VALIDITY

e The length of a boolean expression is the length of the — T
string encoding it.

® SATISFIABILITY (SAT): Given a CNF ¢, is it satisfiable? Valid Unsatisfiable

e Solvable in time O(n?2") on a TM by the truth table
method.

v

e Solvable in polynomial time on an NTM, hence in NP e The negation of an unsatisfiable expression is a valid

(p- 49).

e A most important problem in answering the P = NP
problem (p. 149).

expression.

e None of the three problems—satisfiability,
unsatisfiability, validity—are known to be in P.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) _
and VALIDITY Boolean Functions

e UNSAT (SAT COMPLEMENT): Given a boolean expression * An n-ary boolean function is a function

¢, is it unsatisfiable? f: {true, false}” — {true, false}.

e VALIDITY: Given a boolean expression ¢, is it valid?
P ¢ e It can be represented by a truth table.

— ¢ is valid if and only if —¢ is unsatisfiable.

. e There are 22" such boolean functions.
— So UNSAT and VALIDITY have the same complexity.

— Each of the 2™ truth assignments can make f true or
e Both are solvable in time O(n?2") on a TM by the truth

table method.

false.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86

Boolean Functions (continued)

e A boolean expression expresses a boolean function.

— Think of its truth value under all truth assignments.
e A boolean function expresses a boolean expression.

- \/T = ¢, literal y; is true under T(yl ARERNA y”)
* Y1 A+ Ay, is the minterm over {z1,...,z,} for
T.
— The length® is < n2" < 227,
— In general, the exponential length in n cannot be
avoided (p. 94)!

2We count the logical connectives here.

Boolean Circuits

A boolean circuit is a graph C' whose nodes are the

gates.
e There are no cycles in C.

All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

Each gate has a sort from

{true, false,V,A, 0, T1,Z2,...}.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 87

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 89

Boolean Functions (concluded)

1 x| f(z1,22)
0 0 1
0 1 1
1 0 0
1 1 1

The corresponding boolean expression:

(_',%'1 AN —|£L'2) \Y ("l’l AN 1'2) V (l’l AN 1'2).

Boolean Circuits (concluded)

Gates of sort from {true,false,x1,x2,...} are the

inputs of C' and have an indegree of zero.

e The output gate(s) has no outgoing edges.

A boolean circuit computes a boolean function.

The same boolean function can be computed by

infinitely many boolean circuits.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 88

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 90

Boolean Circuits and Expressions
e They are equivalent representations.

e One can construct one from the other:

b | _x’ ‘
xl
O
X Dx] /\
b X

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 91

An Example

((e,0x,)0x,0x,)) O(=(x;0x,))
U

O
A
PPN

e Circuits are more economical because of the possibility
of sharing.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 92

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment
such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the
circuit has no variable gates.

e CIRCUIT SAT € NP: Guess a truth assignment and then
evaluate the circuit.

e CIRCUIT VALUE € P: Evaluate the circuit from the input
gates gradually towards the output gate.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 93

Some Boolean Functions Need Exponential Circuits®

Theorem 8 (Shannon (1949)) For any n > 2, there is an
n-ary boolean function f such that no boolean circuits with

2" /(2n) or fewer gates can compute it.
e There are 22" different n-ary boolean functions.

e So it suffices to prove that the number of boolean
circuits with 2"/(2n) or fewer gates is less than 22",

aCan be strengthened to “almost all boolean functions ...”

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 94

The Proof (concluded)

e There are at most ((n +5) x m?)™ boolean circuits with
m or fewer gates (see next page).

e But ((n+5) x m?)™ < 22" when m = 2"/(2n).

og. An2
— mlogy((n+5) x m?) =2"(1 — lg’éiﬁ“”) < 2™ for

n > 2.
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 95
n+5 choices
m choices m choices
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 96

Relations between Complexity Classes

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 97

Proper (Complexity) Functions
o We say that f: N — N is a proper (complexity)
function if the following hold:
— f is nondecreasing.
— There is a k-string TM My such that
My (z) = U= for any z.2
— My halts after O(|z |+ f(|z])) steps.
— My uses O(f(|z])) space besides its input z.
e M;’s behavior depends only on |z | not z’s contents.

e M/y’s running time is basically bounded by f(n).

2This point will become clear in Proposition 9 on p. 101.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 98

Examples of Proper Functions

e Most “reasonable” functions are proper: ¢, [logn],
polynomials of n, 2™, \/n, n!, etc.

e If f and g are proper, then so are f + g, fg, and 29.

e Only proper functions f will be used in TIME(f(n)) and
NTIME(f(n)).

Precise TMs Are General

Proposition 9 Suppose a TM* M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M’ which decides L in time O(n + f(n)) (space O(f(n)),
respectively).

e M’ on input z first simulates the TM My associated
with the proper function f on zx.

e My’s output of length f(|z|) will serve as a “yardstick”

or an “alarm clock.”

2]t can be deterministic or nondeterministic.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 99

Precise Turing Machines

e A TM M is precise if there are functions f and ¢ such
that for every n € N, for every z of length n, and for
every computation path of M,

— M halts after precise f(n) steps, and
— All of its strings are of length precisely g(n) at
halting.

e M can be deterministic or nondeterministic.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 101

The Proof (continued)

e If f is a time bound:

— The simulation of each step of M on x is matched by
advancing the cursor on the “clock” string.
— M’ stops at the moment the “clock” string is

exhausted—even if M (x) stops before that time.

— The time bound is therefore O(|z |+ f(| x])).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 100

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 102

Important Time Complexity Classes (concluded)
The Proof (concluded)

P = TIME(n"),

e If f is a space bound: L
NP = NTIME(n"),

— M’ simulates on M}’s output string. N

E = TIME(2""),

— The total space, not counting the input string, is o

EXP = TIME(2
O(f(n). @),
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105

Important Time Complexity Classes

e We write expressions like n* to denote the union of all
complexity classes, one for each value of k.

e For example,

NTIME(n*) = | NTIME(n?).
§>0

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 104

