
More Undecidability

• {M : M halts on all inputs}.
– Given M ; x, we construct the following machine:

∗ Mx(y) : if y = x then M(x) else halt.

– Mx halts on all inputs if and only if M halts on x.

– So if the said language were recursive, H would be

recursive, a contradiction.

– This technique is called reduction.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67

Reductions in Proving Undecidability

• Suppose we are asked to prove L is undecidable.

• Language H is known to be undecidable.

• We try to find a computable transformation (or

reduction) R such that thata

∀x(R(x) ∈ L if and only if x ∈ H).

• This suffices to prove that L is undecidable.

aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68

Complements of Recursive Languages

Lemma 6 If L is recursive, then so is L̄.

• Let L be decided by M (which is deterministic).

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 69

Recursive and Recursively Enumerable Languages

Lemma 7 L is recursive if and only if both L and L̄ are

recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then x ∈ L and M ′ halts on state “yes.”

• If M̄ accepts, then x 6∈ L and M ′ halts on state “no.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70

R

coRE
RE

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

Boolean Logic

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72

Boolean Logica

Boolean variables: x1, x2,

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

•
∨n

i=1
φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

•
∧n

i=1
φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aBoole (1815–1864) in 1847.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73

Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression φ if it defines the truth value for every

variable in φ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

Satisfaction

• T |= φ means boolean expression φ is true under T ; in

other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of

them, T |= φ1 if and only if T |= φ2.

– Equivalently, T |= (φ1 ⇔ φ2).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows, one for each possible

truth assignment of the n variables together with the

truth value of φ under that truth assignment.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Check if they give identical truth values under all 2n

truth assignments.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

De Morgan’sa Laws

• De Morgan’s laws say that

¬(φ1 ∧ φ2) = ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) = ¬φ1 ∧ ¬φ2.

• Here is a proof for the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal

form (CNF) if

φ =
n∧

i=1

Ci,

where each clause Ci is the disjunction of one or more

literals.

• For example, (x1 ∨x2)∧ (x1 ∨¬x2)∧ (x2 ∨x3) is in CNF.

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form

(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of one or

more literals.

• For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3)

is in DNF.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj: This is trivially true.

φ = ¬φ1 and a CNF is sought: Turn φ1 into a DNF and apply

de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought: Turn φ1 into a CNF and apply

de Morgan’s laws to make a DNF for φ.

φ = φ1 ∨ φ2 and a DNF is sought: Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought: Let φ1 =
∧n1

i=1
Ai and

φ2 =
∧n2

i=1
Bi be CNFs. Set φ =

∧n1

i=1

∧n2

j=1
(Ai ∨ Bj).

φ = φ1 ∧ φ2: Similar to above.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81

Satisfiability

• A boolean expression φ is satisfiable if there is a truth

assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all

T appropriate to φ.

• φ is unsatisfiable if and only if φ is false under all

appropriate truth assignments if and only if ¬φ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82

satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in time O(n22n) on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP

(p. 49).

• A most important problem in answering the P = NP

problem (p. 149).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83

unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– So unsat and validity have the same complexity.

• Both are solvable in time O(n22n) on a TM by the truth

table method.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84

Relations among sat, unsat, and validity

� � � � � � � � � � � � 	 � �
 � �

• The negation of an unsatisfiable expression is a valid

expression.

• None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22n

such boolean functions.

– Each of the 2n truth assignments can make f true or

false.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86

Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true under T (y1 ∧ · · · ∧ yn).

∗ y1 ∧ · · · ∧ yn is the minterm over {x1, . . . , xn} for

T .

– The lengtha is ≤ n2n ≤ 22n.

– In general, the exponential length in n cannot be

avoided (p. 94)!

aWe count the logical connectives here.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 87

Boolean Functions (concluded)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 88

Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 89

Boolean Circuits (concluded)

• Gates of sort from {true, false, x1, x2, . . .} are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by

infinitely many boolean circuits.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90

Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬ � �

¬

� �

� � ∨ �
�

∨

� � �
�

� � ∧ �
�

∧

� � �
�

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 91

An Example

� �� �

∧� � � ∧ �� �

∨� 	 � � ∨ (¬ �� �

∨� 	 � �

∧

�
 � � � �

∨

� 	

¬∧

∨

• Circuits are more economical because of the possibility

of sharing.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 92

circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 93

Some Boolean Functions Need Exponential Circuitsa

Theorem 8 (Shannon (1949)) For any n ≥ 2, there is an

n-ary boolean function f such that no boolean circuits with

2n/(2n) or fewer gates can compute it.

• There are 22n

different n-ary boolean functions.

• So it suffices to prove that the number of boolean

circuits with 2n/(2n) or fewer gates is less than 22n

.

aCan be strengthened to “almost all boolean functions . . .”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 94

The Proof (concluded)

• There are at most ((n + 5) × m2)m boolean circuits with

m or fewer gates (see next page).

• But ((n + 5) × m2)m < 22n

when m = 2n/(2n).

– m log2((n + 5) × m2) = 2n(1 − log2
4n

2

n+5

2n
) < 2n for

n ≥ 2.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 95

m
 choices

n
+5 choices

m
choices

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 96

Relations between Complexity Classes

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 97

Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = uf(|x |) for any x.a

– Mf halts after O(|x | + f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is basically bounded by f(n).

aThis point will become clear in Proposition 9 on p. 101.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 98

Examples of Proper Functions

• Most “reasonable” functions are proper: c, dlog ne,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Only proper functions f will be used in TIME(f(n)) and

NTIME(f(n)).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 99

Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precise f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

• M can be deterministic or nondeterministic.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 100

Precise TMs Are General

Proposition 9 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n + f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”

or an “alarm clock.”

aIt can be deterministic or nondeterministic.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 101

The Proof (continued)

• If f is a time bound:

– The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

– M ′ stops at the moment the “clock” string is

exhausted—even if M(x) stops before that time.

– The time bound is therefore O(|x | + f(|x |)).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 102

The Proof (concluded)

• If f is a space bound:

– M ′ simulates on Mf ’s output string.

– The total space, not counting the input string, is

O(f(n)).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103

Important Time Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 104

Important Time Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105

