Theory of Computation Lecture
Notes

Prof. Yuh-Dauh Lyuu
Dept. Computer Science & Information Engineering
and
Department of Finance
National Taiwan University

Problems and Algorithms

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 1

Class Information

e Papadimitriou. Computational Complexity. 2nd
printing. Addison-Wesley. 1995.

e Check
www.csie.ntu.edu.tw/ lyuu/complexity/2005

for lecture notes.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 2

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3
I have never done anything “useful.”
— Godfrey Harold Hardy (1877-1947),
A Mathematician’s Apology (1940)

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4

Tractability and intractability

Polynomial in terms of the input size n defines

What This Course Is All About tractability.

_ 2 90
Computability: What can be computed? n, nlogn, n”, n™

. . — Time, space, circuit size, number of random bits, etc.
e What is computation anyway? » SPace; ’ ’

e There are well-defined problems that cannot be It results in a fruitful and practical theory of complexity.

computed. Few practical, tractable problems require a large degree.

e In fact, “most” problems cannot be computed.

Exponential-time or superpolynomial-time algorithms
are usually impractical.

— plogn oV 9n pl~ \/271n (n/e)".

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 7

) Growth of Factorials

What This Course Is All About (concluded)

n nl| n n!
Complexity: What is a computable problem’s inherent
i 1 11 9 362,880
complexity?

e Some computable problems require at least 2 2|10 3,628,800
exponential time and/or space; they are intractable. 3 6|11 39,916,800
e Some practical problems require superpolynomial 4 24 | 12 479,001,600
resources unless certain conjectures are disproved. 5 120 | 13 6,227,020,800
e Other resource limits besides time and space? 6 720 | 14 87,178,291,200
— Program size, circuit size (growth), number of 7 5040 | 15 1,307,674,368,000
random bits, etc. 8 40320 | 16 20,922,789.888,000

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 8

Turing Machines®

A Turing machine (TM) is a quadruple M = (K, X, 4, s).
e K is a finite set of states.

s € K is the initial state.

¥ is a finite set of symbols (disjoint from K).
Tuﬂng Machines — ¥ includes | | (blank) and > (first symbol).

0: K xYX— (KU{h, “yes”, “no”}) x L x {«,—,—}isa

transition function.

— « (left), — (right), and — (stay) signify cursor
movements.

aTuring (1936).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 9 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 11
What Is Computation? A TM Schema
e That can be coded in an algorithm.
e An algorithm is a detailed step-by-step method for
solving a problem. 0

— The Euclidean algorithm for the greatest common

divisor is an algorithm.

— “Let s be the least upper bound of compact set A” is
not an algorithm.

A

>1000110000111001110001110ULILI

— “Let s be a smallest element of a finite-sized array”

can be solved by an algorithm.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 10 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 12

“Physical” Interpretations

The tape: computer memory and registers.
e J: program.

K instruction numbers.

e s: “main()” in C.

3: alphabet much like the ASCII code.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 13

More about ¢

e The program has the halting state (h), the accepting
state (“yes”), and the rejecting state (“no”).

e Given current state ¢ € K and current symbol o € 3,

6(g,0) = (p, p, D).

— It specifies the next state p, the symbol p to be
written over ¢, and the direction D the cursor will
move afterwards.

e We require §(q,>) = (p, >, —) so that the cursor never
falls off the left end of the string.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 14

The Operations of TMs

e Initially the state is s.

e The string on the tape is initialized to a >, followed by a
finite-length string x € (X — {||})*.

x is the input of the TM.

— The input must not contain | |s (why?)!

The cursor is pointing to the first symbol, always a ©>.

The TM takes each step according to §.

The cursor may overwrite | | to make the string longer
during the computation.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 15

The Halting of a TM
e A TM M may halt in three cases.

“yes”: M accepts its input x, and M (z) = “yes”.

“no”: M rejects its input z, and M (x) = “no”.

h: M(zx) =y, where the string consists of a >, followed
by a finite string y, whose last symbol is not | |,
followed by a string of | |s.

— y is the output of the computation.

— y may be empty denoted by e.

e If M never halts on x, then write M (z) =,.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 16

Why TMs?

Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

One can develop a complexity theory based on C++ or
Java, say.

e But the added complexity does not yield additional
fundamental insights.

We will describe TMs in pseudocode.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 17

The Concept of Configuration

e A configuration is a complete description of the
current state of the computation.

e The specification of a configuration is sufficient for the
computation to continue as if it had not been stopped.
— What does your PC save before it sleeps?

— Enough for it to resume work later.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 18

Configurations (concluded)

e A configuration is a triple (¢, w, u):
—-qge K.
— w € X* is the string to the left of the cursor
(inclusive).
— u € X* is the string to the right of the cursor.

e Note that (w,u) describes both the string and the cursor
position.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 19

H

»>1000110000111001110001110uULIL

e w =[>1000110000.

e 1 =111001110001110.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 20

Yielding Palindromes
* Fixa TM M. e A string is a palindrome if it reads the same forwards
e Configuration (¢, w,u) yields configuration (¢, w’,u’) in one and backwards (e.g., 001100).
ste . . .
P Mo e A TM program can be written to recognize palindromes:
(Q7w7u)—>(q7w:u)7 .
— It matches the first character with the last character.
if a step of M from configuration (¢, w,u) results in
configuration (q', w', u’) — It matches the second character with the next to last
character, etc. (see next page).
o (q,w,u) M»(" w’,u'): Configuration (g, w,u) yields 7
& M A s Dy — “yes” for palindromes and “no” for nonpalindromes.
configuration (¢’,w’,u") in k € N steps.
g* e This program takes O(n?) steps.
o (qg,w,u) M (¢',w’,u’): Configuration (q,w,u) yields prog (n?) step
configuration (¢’,w’,u’). e Can we do better?
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 21 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 23

Example: How to Insert a Symbol
100011000000100111

e We want to compute f(z) = ax.

— The TM moves the last symbol of = to the right by

one position.

— It then moves the next to last symbol to the right,

and so on.

— The TM finally writes a in the first position.

e The total number of steps is O(n), where n is the length

of z.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 22 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 24

Decidability and Recursive Languages

Let L C (3= {L]})" be a language, i.c., a set of strings Acceptability and Recursively Enumerable Languages
of symbols with a finite length. (Concluded)

— For example, {0,01, 10,210, 1010,...}.
{ } e If L is accepted by some TM, then L is a recursively

Let M be a TM such that for any string z:

— If w € L, then M(x) = “yes.” — A recursively enumerable language can be generated
— Ifz & L, then M(z) = “no.” by a TM, thus the name.

enumerable language.

We say M decides L. — That is, there is an algorithm such that for every

. . . . x € L, it will be printed out eventually.
e If L is decided by some TM, then L is recursive.

— Palindromes over {0, 1}* are recursive.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 25 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 27

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively

Acceptability and Recursively Enumerable Languages enumerable.
e Let L C (X —{[|})* be a language. e We need to design a TM that accepts L.
e Let M be a TM such that for any string x: e Let TM M decide L.
— Ifz € L, then M(z) = “yes.” e We next modify M’s program to obtain M’ that accepts
— If x ¢ L, then M(z) =" L.
e We say M accepts L. e M’ is identical to M except that when M is about to

halt with a “no” state, M’ goes into an infinite loop.

e M’ accepts L.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 26 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 28

Turing-Computable Functions
o Let f: (X —{||}H)*— X"
— Optimization problems, root finding problems, etc.
e Let M be a TM with alphabet 3.

e M computes f if for any string z € (X — {|})*,
M(z) = f(x).

e We call f a recursive function? if such an M exists.

aGodel (1931).

Extended Church’s Thesis
e All “reasonably succinct encodings” of problems are
polynomially related.

— Representations of a graph as an adjacency matrix

and as a linked list are both succinct.
— The unary representation of numbers is not succinct.
— The binary representation of numbers is succinct.

* 1001 vs. 111111111.

e All numbers for TMs will be binary from now on.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 29

Church’s Thesis or the Church-Turing Thesis

e What is computable is Turing-computable; TMs are
algorithms (Kleene 1953).

e Many other computation models have been proposed.

— Recursive function (Goédel), A calculus (Church),
formal language (Post), assembly language-like RAM
(Shepherdson & Sturgis), boolean circuits (Shannon),
extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.
e All have been proved to be equivalent.

e No “intuitively computable” problems have been shown

not to be Turing-computable (yet).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 31

Turing Machines with Multiple Strings

o A k-string Turing machine (TM) is a quadruple
M= (K,X%,0,s).

K, ¥, s are as before.

e §: K x¥F — (KU{h, “yes”, “no” }) x (X x {«,—, —}*.

All strings start with a .

The first string contains the input.

Decidability and acceptability are the same as before.

When TMs compute functions, the output is on the last
(kth) string.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 30

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 32

A 2-String TM

li

>1000110000111001110001110uuUu

v

»>111110000ULLUULLULLLLLLLULLL

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 33

PALINDROME Revisited

o A 2-string TM can decide PALINDROME in O(n) steps.
— It copies the input to the second string.

— The cursor of the first string is positioned at the first
symbol of the input.

— The cursor of the second string is positioned at the
last symbol of the input.
— The two cursors are then moved in opposite

directions until the ends are reached.

— The machine accepts if and only if the symbols under
the two cursors are identical at all steps.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34

]

y]

>ababbaabbaabbaabbabauuu
v
>ababbaabbaabbaabbabauLiu

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 35

Configurations and Yielding

e The concept of configuration and yielding is the same as

before except that a configuration is a (2k + 1)-triple
(g, w1, u1, wa, Ug, ..., Wk, Uk).
— wju; is the ith string.
— The ith cursor is reading the last symbol of w;.
— Recall that > is each w;’s first symbol.
e The k-string TM’s initial configuration is

2k
(s,>,x,>,€,>,€6...,>,€).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36

