Approximability, Unapproximability, and Between
e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.
— KNAPSACK has a threshold of 0 (see p. 586).
— But NODE COVER and MAXSAT have a threshold
larger than 0.
e The situation is maximally pessimistic for TSP: It
cannot be approximated unless P = NP (see p. 584).

— The approximation threshold of TSP is 1.
* The threshold is 1/3 if the TSP satisfies the
triangular inequality.

— The same holds for INDEPENDENT SET.

The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost |V is returned.
— This tour must be a Hamiltonian cycle.

e Suppose a tour with at least one edge of length % is
returned.

— The total length of this tour is > V]

1—€"
— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

— The optimum tour has a cost exceeding | V'|.

— Hence G has no Hamiltonian cycles.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 583

Unapproximability of Tsp?

Theorem 75 The approximation threshold of TSP is 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm for the
NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V| E), construct a TSP with |V/|
cities with distances

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 585

KNAPSACK Has an Approximation Threshold of Zero*

Theorem 76 For any €, there is a polynomial-time

e-approzrimation algorithm for KNAPSACK.

e We have n weights wy, wa, ..., w, € ZT, a weight limit

W, and n values vy, vs,...,v, € ZT.P

e We must find an S C {1,2,...,n} such that
YiesWi < W and), ¢ v; is the largest possible.

o Let

V = max{vl,v27 e ,’Un}.

aIbarra and Kim (1975).

bIf the values are fractional, the result is slightly messier but the
main conclusion remains correct. Contributed by Mr. Jr-Ben Tian
(R92922045) on December 29, 2004.

1, if{i,j}eE
4= ~
1—c, Otherwise
2Sahni and Gonzales (1976).
@©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 584

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 586

The Proof (continued)

e For 0 <i<mand 0 <v<nV, define W(i,v) to be the
minimum weight attainable by selecting some among the

i first items, so that their value is exactly v.

Start with W (0, v) = oo for all v.

e Then

Wi+ 1,v) = min{W(%,v), W(i,v — viy1) + Wit1 }-

Finally, pick the largest v such that W(n,v) < W.

The running time is O(n?V), not polynomial time.

Key idea: Limit the number of precision bits.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 587

The Proof (continued)

e Given the instance x = (w1, ..., Wy, W,v1,...,0,), we

define the approximate instance

! / /
= (wy,...,w,, W,v1,...,0,),

I ob | Yi
v=2|5].

e Solving 2’ takes time O(n?V/2°).

where

e The solution S’ is close to the optimum solution S:

Zviz Zviz ZUéEZviEZ(vi—?)zZvi—an.

€S icS’ €S’ €S 1€ES €S

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 588

The Proof (concluded)

e Hence

Zvi ZZUi—nQb.

€S’ i€S
e Because V is a lower bound on opT (if, without loss of

generality, w; < W), the relative deviation from the
optimum is at most n2°/V.

e By truncating the last b = |log, %J bits of the values,
the algorithm becomes e-approximate.

e The running time is then O(n2V/2%) = O(n?/e), a
polynomial in n and 1/e.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 589

Pseudo-Polynomial-Time Algorithms

e Consider problems with inputs that consist of a
collection of integer parameters (TSP, KNAPSACK, etc.).

e An algorithm for such a problem whose running time is
a polynomial of the input length and the value (not
length) of the largest integer parameter is a

pseudo-polynomial-time algorithm.?

e On p. 587, we presented a pseudo-polynomial-time
algorithm for KNAPSACK that runs in time O(n?V).

e How about TSP (D), another NP-complete problem?

2Garey and Johnson (1978).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 590

No Pseudo-Polynomial-Time Algorithms for TSP (D)

e By definition, a pseudo-polynomial-time algorithm
becomes polynomial-time if each integer parameter is
limited to having a value polynomial in the input length.

e Corollary 39 (p. 304) showed that HAMILTONIAN PATH is
reducible to TSP (D) with weights 1 and 2.

e As HAMILTONIAN PATH is NP-complete, TSP (D) cannot
have pseudo-polynomial-time algorithms unless P = NP.

e TSP (D) is said to be strongly NP-hard.

e Many weighted versions of NP-complete problems are
strongly NP-hard.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 591

Polynomial-Time Approximation Scheme
e Algorithm M is a polynomial-time approximation
scheme (PTAS) for a problem if:

— For each € > 0 and instance x of the problem, M
runs in time polynomial (depending on €) in |z |.
* Think of € as a constant.

— M is an e-approximation algorithm for every e > 0.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 592

Fully Polynomial-Time Approximation Scheme

e A polynomial-time approximation scheme is fully
polynomial (FPTAS) if the running time depends
polynomially on |z | and 1/e.

— Maybe the best result for a “hard” problem.

— For instance, KNAPSACK is fully polynomial with a
running time of O(n?/e) (p. 586).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 593

Square of G
e Let G = (V, E) be an undirected graph.

e G2 has nodes {(vy,v2) : v1,v2 € V} and edges

H{ (u,), (v,0") i (wu=vA{u'\,v} € E)V{uv} € E}.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 594

Independent Sets of G and G?

Lemma 77 G(V, E) has an independent set of size k if and
only if G* has an independent set of size k>.

e Suppose G has an independent set I C V of size k.

e {(u,v) :u,v € I} is an independent set of size k? of G2.

(LD (1,2) (1,3)

2

The Proof (concluded)?
o If |U| > k, then we are done.
e Now assume |U | < k.

e As the k2 nodes in I? cover fewer than k “rows,” there

must be a “row” in possession of > k nodes of I2.

e Those > k nodes will be independent in G as each “row”

is a copy of G.

8Thanks to a lively class discussion on December 29, 2004.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 595

The Proof (continued)

e Suppose G? has an independent set I? of size k2.

o U={u:3vweV (u,v) € I?}is an independent set of G.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 597

e |U | is the number of “rows” that the nodes in I? occupy.

Approximability of INDEPENDENT SET

e The approximation threshold of the maximum
independent set is either zero or one (it is one!).

Theorem 78 If there is a polynomial-time e-approrimation
algorithm for INDEPENDENT SET for any 0 < € < 1, then
there is a polynomial-time approximation scheme.

e Let G be a graph with a maximum independent set of
size k.

e Suppose there is an O(n’)-time e-approximation
algorithm for INDEPENDENT SET.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 596

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 598

: Comments
The Proof (continued)
e INDEPENDENT SET and NODE COVER are reducible to

e By Lemma 77 (p. 595), the maximum independent set of
each other (Corollary 37, p. 286).

G? has size k2.
e NODE COVER has an approximation threshold at most

e Apply the algorithm to G2.
Y 8 0.5 (p. 569).

e The running time is O(n?).
) e But INDEPENDENT SET is unapproximable (see the

e The resulting independent set has size > (1 — €) k2. textbook).
e By the construction in Lemma 77 (p. 595), we can e INDEPENDENT SET limited to graphs with degree < k is
obtain an independent set of size > /(1 — €) k2 for G. called k-DEGREE INDEPENDENT SET.
e Hence there is a (1 — /1 — ¢)-approximation algorithm ¢ k-DEGREE INDEPENDENT SET is approximable (see the
for INDEPENDENT SET. textbook).
©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601

The Proof (concluded)

e In general, we can apply the algorithm to G?' to obtain
an (1 —(1— 6)271)—approxilnation algorithm for
INDEPENDENT SET.

. L oty
e The running time is n? *.2

e Now pick £ = [log %1. On P vs NP

. log(l—e¢)
. . K2
e The running time becomes n les(i-<")

e It is an €/-approximation algorithm for INDEPENDENT
SET.

21t is not fully polynomial.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602

Density®
The density of language L C ¥* is defined as
densp(n) =[{x € L:|z| <n}.
o If L ={0,1}*, then densy (n) = 2"+ — 1.
e So the density function grows at most exponentially.
e For a unary language L C {0}*,

densy(n) <n+1.

—
— Because L C {¢,0,00,...,00---0,...}.

aBerman and Hartmanis (1977).

Self-Reducibility for SAT

An algorithm exploits self-reducibility if it reduces the
problem to the same problem with a smaller size.

Let ¢ be a boolean expression in n variables
T1,L2y...,3Tp.
t € {0,1}/ is a partial truth assignment for

L1,X2,...,Tj.

¢[t] denotes the expression after substituting the truth
values of t for x1,x9,..., 2 in ¢.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 605

Sparsity

e Sparse languages are languages with polynomially
bounded density functions.

density functions.

e Dense languages are languages with superpolynomial

We call the algorithm below with empty ¢.
1:
2:
3:
4:
5:

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).

An Algorithm for sSAT with Self-Reduction

if |t| =n then

return ¢[t];
else

return ¢[t0]V ¢[t1];
end if

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 606

NP-Completeness and Density® The Proof (continued)
inu

e Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t'] must be both satisfiable or unsatisfiable.

Theorem 79 If a unary language U C {0}* is
NP-complete, then P= NP.

e Suppose there is a reduction R from SAT to U.
e R(¢[t]) has polynomial length < p(n) because R runs in

e We shall use R to guide us in finding the truth log space.

assignment that satisfies a given boolean expression ¢

with n variables if it is satisfiable. o As It maps to unary numbers, there are only

polynomially many p(n) values of R($[t]).

e Specifically, we use R to prune the exponential-time

exhaustive search on p. 606, e How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?
e The trick is to keep the already discovered results ¢|[¢]

in a table H.
2Berman (1978).

e If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 607 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 609

1: if |t| = n then

2: return @[t];

3: else

4 if (R(¢[t]),v) is in table H then The Proof (continued)

5: return v;

6 else e A search of the table takes time O(p(n)) in the random
7 if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then access memory model.

8: Insert (R(¢[t]),1) into H; e The running time is O(Mp(n)), where M is the total
o return “satisfiable”; number of invocations of the algorithm.
10: else
11: Insert (R(¢[t]),0) into H; e The invocations of the algorithm form a binary tree of
12: return “unsatisfiable”; depth at most n.
13: end if
14: end if
15: end if

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 608 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610

The Proof (continued)
e There is a set T = {t1,t9,...} of invocations (partial
truth assignments, i.e.) such that:
= [T] = (M = 1)/(2n).
— All invocations in T are recursive (nonleaves).

— None of the elements of T is a prefix of another.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 611

3rd step: Delete all ¢'s
at most » ancestors
(prefixes) from
further consideration

2nd step: Select any
bottom undeleted
invocation ¢ and add
itto T

\ 1st step: Delete
leaves; (M —1)/2

nonleaves remaining

The Proof (continued)

e All invocations ¢t € T have different R(¢[t]) values.
— None of s,t € T is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of T implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 613

The Proof (concluded)

e We already know that there are at most p(n) such

values.
e Hence (M —1)/(2n) < p(n).
e Thus M < 2np(n) + 1.
e The running time is therefore O(Mp(n)) = O(np?(n)).

e We comment that this theorem holds for any sparse

language, not just unary ones.?

a@Mahaney (1980).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 614

