Prover and Verifier

e There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

e Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

e The verifier’s objective is to accept only correct

assertions (soundness).
e The verifier usually has an easier job than the prover.

e The setup is very much like the Turing test.?

aTuring (1950).

Interactive Proof Systems (concluded)

e The system decides L if the following two conditions

hold for any common input z.

— If x € L, then the probability that = is accepted by

the verifier is at least 1 — 27121,

— If x &€ L, then the probability that = is accepted by
the verifier with any prover replacing the original

prover is at most 2711

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |z |.
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Interactive Proof Systems

e An interactive proof for a language L is a sequence of

questions and answers between the two parties.

e At the end of the interaction, the verifier decides based
on the knowledge he acquired in the proof process

whether the claim is true or false.

e The verifier must be a probabilistic polynomial-time
algorithm.
e The prover runs an exponential-time algorithm.

— If the prover is not more powerful than the verifier,

no interaction is needed.
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An Interactive Proof
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IP?

e IP is the class of all languages decided by an interactive

proof system.

e When x € L, the completeness condition can be
modified to require that the verifier accepts with

certainty without affecting IP.P

e Similar things cannot be said of the soundness condition
when = & L.

e Verifier’s coin flips can be public.©

2Goldwasser, Micali, and Rackoff (1985).
PGoldreich, Mansour, and Sipser (1987).
°Goldwasser and Sipser (1989).

Graph Isomorphism
L4 Vl :Vé :{1,2,...,TL}.

e Graphs G1 = (Vq, F1) and Gy = (Vs, E3) are
isomorphic if there exists a permutation 7 on
{1,2,...,n} so that (u,v) € F1 & (7w(u),n(v)) € Es.

e The task is to answer if G; & G2 (isomorphic).
e No known polynomial-time algorithms.
e The problem is in NP (hence IP).

e But it is not likely to be NP-complete.?

aSchoning (1987).
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The Relations of IP with Other Classes
e NP CIP.
— IP becomes NP when the verifier is deterministic.

e BPP C IP.

— IP becomes BPP when the verifier ignores the

prover’s messages.

e IP actually coincides with PSPACE (see pp. 844ff for a
proof).?

2Shamir (1990).

GRAPH NONISOMORPHISM

V1:V2:{1,2,...7TL}.

Graphs Gy = (V4, E1) and Ga = (Va, Es) are
nonisomorphic if there exist no permutations = on
{1,2,...,n} so that (u,v) € E1 & (7(u),7(v)) € Es.

Again, no known polynomial-time algorithms.
— It is in coNP, but how about NP or BPP?
— It is not likely to be coNP-complete.

e Surprisingly, GRAPH NONISOMORPHISM € [P.?

aGoldreich, Micali, and Wigderson (1986).

The task is to answer if G; 2 G2 (nonisomorphic).
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A 2-Round Algorithm

1: Victor selects a random i € {1,2}; Knowledge in Proofs

2: Victor selects a random permutation 7 on {1,2,...,n}; S Ik tisfvi ) ‘t tisfiabl

3: Victor applies 7 on graph G; to obtain graph H; ¢ DUppose now.a satistyng assignment to a satisnable
4: Victor sends (G1, H) to Peggy; boolean expression.

5: if Gi = H then e I can convince Alice of this by giving her the assignment.
6: Peggy sends j =1 to Victor;

7. else e But then I give her more knowledge than necessary.

8:  Peggy sends 7 = 2 to Victor; — Alice can claim that she found the assignment!

9: end if — Login authentication faces essentially the same issue.
10: if j =i then
11:  Victor accepts; — See
12: else www.wired.com/wired/archive/1.05/atm _pr.html
13:  Victor rejects; for a famous ATM fraud in the U.S.
14: end if
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Analysis Knowledge in Proofs (concluded)
e Victor runs in probabilistic polynomial time. e Digital signatures authenticate documents but not
e Suppose the two graphs are not isomorphic. individuals.
— Peggy is able to tell which G; is isomorphic to H. e They hence do not solve the problem.

— So Victor always accepts. . . .
way P e Suppose I always give Alice random bits.

e Suppose the two graphs are isomorphic. .
e Alice’s extracts no knowledge from me by any measure,
— No matter which ¢ is picked by Victor, Peggy or any but I thi

u rove nothing.
prover sees 2 identical graphs. p &

— Peggy or any prover with exponential power has only e Question 1: Can we design a protocol to convince Alice
probability one half of guessing 4 correctly. of (the knowledge of) a secret without revealing
— So Victor erroneously accepts with probability 1/2. anything extra?

e Repeat the algorithm to obtain the desired probabilities. Question 2: How to define this idea rigorously?
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Comments (continued)

a
Zero Knowledge Proofs e Whatever a verifier can “learn” from the specified prover

An interactive proof protocol (P, V) for language L has the P via the communication channel could as well be
perfect zero-knowledge property if: computed from the verifier alone.
e For every verifier V', there is an algorithm M with e The verifier does not learn anything except “x € L.”

expected polynomial running time. e For all practical purposes “whatever” can be done after

e M on any input x € L generates the same probability interacting with a zero-knowledge prover can be done by
distribution as the one that can be observed on the just believing that the claim is indeed valid.

. y .
communication channel of (P, V) on input 2. e Zero-knowledge proofs yield no knowledge in the sense

*Goldwasser, Micali, and Rackoff (1985). that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.
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Comments (concluded)

Comments . _ .
e The “paradox” is resolved by noting that it is not the
e Zero knowledge is a property of the prover. transcript of the conversation that convinces the verifier,
— It is the robustness of the prover against attempts of but the fact that this conversation was held “on line.”

the verifier to extract knowledge via interaction. e There is 1o zero-knowledge requirement when z ¢ I.
— The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program. e Computational zero-knowledge proofs are based on

complexity assumptions.

A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim. e It is known that if one-way functions exist, then

— The proof is hence not transferable zero-knowledge proofs exist for every problem in NP.?

2Goldreich, Micali, and Wigderson (1986).
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Zero-Knowledge Proof of Quadratic Residuosity
Will You Be Convinced? (continued)

e A newspaper commercial for hair-growing products for L form=1,2,...,logyn do

mer. 2:  Peggy chooses a random v € Z and sends
= v? mod n to Victor;

— A (for all practical purposes) bald man has a full 3/ tv H}llo o 1cdor, bit 7 and sends it to P

. 3: S€S 5 3 ;

head of hair after 3 months. ictor chooses a random bit ¢ an beI'l s it to Peggy;

4:  Peggy sends z = u'v mod n, where u is a square root

o A TV commercial for weight-loss products. of z; {u? = z mod n.}
— A (by any reasonable measure) overweight woman 5. Victor checks if 22 = 2’y mod n;
loses 10 kilograms in 10 weeks. 6: end for

7: Victor accepts z if Line 5 is confirmed every time;
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Analysis

Quadratic Residuosity ] . .
e Suppose x is a quadratic nonresidue.

e Let n be a product of two distinct primes. — Peggy can answer only one of the two possible

e Assume extracting the square root of a quadratic residue challenges.
modulo n is hard without knowing the factors. +* Reason: a is a quadratic residue if and only if za is

e We next present a zero-knowledge proof for x being a a quadratic nonresidue.

quadratic residue. — So Peggy will be caught in any given round with
probability one half.
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Analysis (continued)

e Suppose x is a quadratic residue.

Analysis (concluded)

— Peggy can answer all challenges.

— So Victor will accept z. 1: Bob chooses a random z € Z;
2: Bob chooses a random bit ;
e How about the claim of zero knowledge? 3: Bob calculates y = 222~ mod n;
e The transcript between Peggy and Victor when x is a 4: Bob writes (y, i, z) into the transcript;
quadratic residue can be generated without Peggy!
— So interaction with Peggy is useless.
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Comments

Analysis (continued
y ( ) e Bob cheats because (y, i, z) is not generated in the same

e Here is how. order as in the original transcript.
e Suppose x is a quadratic residue.? — Bob picks Victor’s challenge first.
e In each round of interaction with Peggy, the transcript is — Bob then picks Peggy’s answer.

a triplet (y,1, z). — Bob finally patches the transcript.

o We present an efficient algorithm Bob that generates So it is not the transcript that convinces Victor, but

. . . e
(y,1, z) with the same probability without accessing that conversation with Peggy is held “on line.

Peggy. e The same holds even if the transcript was generated by

2By definition, we do not need to consider the other case. a cheating Victor’s interaction with (honest) Peggy, but
we skip the details.
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1:
2:
3:

%

Zero-Knowledge Proof of 3 Colorability®
fori=1,2,...,|E|* do
Peggy chooses a random permutation 7 of the 3-coloring ¢;
Peggy samples an encryption scheme randomly and sends
m(p(1)), 7(¢(2)),...,7(#(]V])) encrypted to Victor;
Victor chooses at random an edge e € F and sends it to
Peggy for the coloring of the endpoints of e;
if e = (u,v) € E then
Peggy reveals the coloring of v and v and “proves” that
they correspond to their encryption;
else
Peggy stops;
end if

2Goldreich, Micali, and Wigderson (1986).
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Analysis

If the graph is 3-colorable and both Peggy and Victor
follow the protocol, then Victor always accepts.

If the graph is not 3-colorable and Victor follows the
protocol, then however Peggy plays, Victor will accept
with probability < (1— m_l)m2 < e ™, where m = | F|.

Thus the protocol is valid.

This protocol yields no knowledge to Victor as all he
gets is a bunch of random pairs.

The proof that the protocol is zero-knowledge to any

verifier is more intricate.

Page 557 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University
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10:
11:
12:
13:
14:
15:
16:

if the “proof” provided in Line 6 is not valid then
Victor rejects and stops;
end if
if w(¢(u)) = m(p(v)) or m(d(u)), m(d(v)) & {1,2,3} then
Victor rejects and stops;
end if
end for

Victor accepts;
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Tackling Intractable Problems
e Many important problems are NP-complete or worse.
e Heuristics have been developed to attack them.
e They are approximation algorithms.

e How good are the approximations?
— We are looking for theoretically guaranteed bounds,
not “empirical” bounds.
e Are there NP problems that cannot be approximated
well (assuming NP # P)?

e Are there NP problems that cannot be approximated at
all (assuming NP # P)?
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Some Definitions

e Given an optimization problem, each problem

instance = has a set of feasible solutions F'(z).

e Each feasible solution s € F(z) has a cost ¢(s) € Zt.

e The optimum cost is OPT(x) = min,cp(,) c(s) for a
minimization problem.

o It is OPT(x) = max,cp(s) c(s) for a maximization
problem.
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Approximation Algorithms
e Let algorithm M on z returns a feasible solution.

e M is an e-approximation algorithm, where ¢ > 0, if
for all x,
c(M(z)) — oPT(z)|
max(OPT(x),c(M(x))) —

— For a minimization problem,

€.

c(M(z)) — minge p(g) c(s)

<ee.
(M ()
— For a maximization problem,
maXe () ols) = (M (@) _
maXse p(x) C(S) -
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Lower and Upper Bounds

e For a minimization problem,
min e(s) < e(M(z)) < w
s€F(x) 1—e¢

— So approximation ratio %w >1—e.

e For a maximization problem,

(1 —¢€) x max ¢(s) <c(M(z)) < max c(s).

SEF(x) SEF (x)

M@)o _

— So approximation ratio MXeer(s) 6(5) =

e The above are alternative definitions of e-approximation
algorithms.
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Range Bounds

e ¢ takes values between 0 and 1. NODE COVER

NODE COVER seeks the smallest C C V in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

e For maximization problems, an e-approximation
algorithm returns solutions within [ (1 — €) x OPT, OPT].

e For minimization problems, an e-approximation

o

A heuristic to obtain a good node cover is to iteratively

algorithm returns solutions within [OPT
move a node with the highest degree to the cover.
e For each NP-complete optimization problem, we shall be

This turns out to produce ratio Céﬁgg) = O(logn).

interested in determining the smallest € for which there

is a polynomial-time e-approximation algorithm.

It is not an e-approximation algorithm for any e < 1.

e Sometimes ¢ has no minimum value.
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Approximation Thresholds
A 0.5-Approximation Algorithm?

. C =10

: while E # () do

e The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

e-approximation algorithm.

o o Delete an arbitrary edge [u,v] from E;
e The approximation threshold of an optimization problem

can be anywhere between 0 (approximation to any Add u and v to C; {Add 2 nodes to C each time.}

: end while

1
2
3
4:  Delete edges incident with 4 and v from F;
5
desired degree) and 1 (no approximation is possible). 6
7

e If P = NP, then all optimization problems in NP have : return C;

approximation threshold 0. aJohnson (1974).

e So we assume P £ NP for the rest of the discussion.
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Analysis

C' contains |C|/2 edges.

No two edges of C' share a node.

Any node cover must contain at least one node from
each of these edges.

This means that opT(G) > |C|/2.

e So

opPT(Q)
C
The approximation threshold is < 0.5.

>1/2.

We remark that 0.5 is also the lower bound for any
“greedy” algorithms.?

aDavis and Impagliazzo (2004).

The 0.5 Bound Is Tight for the Algorithm?®

s

Optimal cover \A/ \

—

~ —_—— —— -
—_—— — -

\
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/
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aContributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003.
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Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth
assignment that satisfies the most.

e MAX2SAT is already NP-complete (p. 267).

e Consider the more general k-MAXGSAT for constant k.

— Given a set of boolean expressions
® = {¢1,¢2,...,¢n} in n variables.

— Each ¢; is a general expression involving k variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.
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A Probabilistic Interpretation of an Algorithm The Search Procedure (concluded)
e Each ¢; involves exactly k variables and is satisfied by ¢; e By our hill-climbing procedure,
of the 2% truth assignments.
& p(q)[.’L’l:t1,$2=t27...,l’n=tn])
e A random truth assignment € {0, 1}" satisfies ¢; with >
robabilit ) = t;/2F.
p y (i) if > p(®[z1 =t1, 22 =t2])
— i) is easy to calculate for a k = O(logn).
p(9:) y (logn) > p(®lay =t1])
e Hence a random truth assignment satisfies an expected > p(®).
number
m
e So at least p(®) expressions are satisfied by truth
p(@) =3 p(6:) ot feast p() exp Y
et assignment (t1,t2,...,tp).
of expressions ¢;. e The algorithm is deterministic.
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The Search Procedure Approximation Analysis
e Clearly e The optimum is at most the number of satisfiable

¢;—i.e., those with p(¢;) > 0.

1
p(®) = 2 {p(2[e1 = true]) + p(P[z1 = false]) }. e Hence the ratio of algorithm’s output vs. the optimum is

e Select the t; € {true, false} such that p(®[zy =t1]) is > p(®)  _ >ip(éi) > min p(ey)
the larger one. - Zp(¢)i)>0 1 ZP(¢1‘)>O 1~ p(pn)>0

e Note that p(®[z1 =t1]) > p(P). e The heuristic is a polynomial-time e-approximation

e Repeat with expression ®[z; = t1 ] until all variables z; algorithm with € =1 — min, )0 P(¢:)-
have been given truth values ¢; and all ¢; either true or e Because p(¢;) > 27%, the heuristic is a polynomial-time
false. e-approximation algorithm with e = 1 — 27,
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Back to MAXSAT

A 0.5-Approximation Algorithm for MAX CcUT
e In MAXSAT, the ¢;’s are clauses.

1: S :=0;
e Hence p(¢;) > 1/2, which happens when ¢; contains a 2: while Jv € V whose switching sides results in a larger
single literal. cut do
3 S:=SU{v}

e And the heuristic becomes a polynomial-time
4: end while

5: return S;

e-approximation algorithm with e = 1/2.2

e If the clauses have k distinct literals, p(¢;) = 1 —27F.
e A 0.12-approximation algorithm exists.?
e And the heuristic becomes a polynomial-time
e (.059-approximation algorithms do not exist unless

NP = ZPP.
aGoemans and Williamson (1995).

e-approximation algorithm with e = 27%.

— This is the best possible for k > 3 unless P = NP.

2Johnson (1974).
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Analysis

/ Optimal cut

MAX CUT Revisited

e The NP-complete MAX CUT seeks to partition the nodes
of graph G = (V, E) into (S,V — S) so that there are as
many edges as possible between S and V — S (p. 289).

e Local search starts from a feasible solution and o /
ur cut

performs “local” improvements until none are possible.
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Analysis (continued)

Partition V = V; U V5 U V3 U V4, where our algorithm
returns (V3 U Vo, V3 U Vy) and the optimum cut is
(ViU V3, Vo UVy).

Let e;; be the number of edges between V; and V;.

e Because no migration of nodes can improve the
algorithm’s cut, for each node in Vi, its edges to V3 U V4
are outnumbered by those to V3 U Vj.

Considering all nodes in V; together, we have
2611 + e19 S e1s + €14, which implies

e12 < e13 + e14.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 581

Analysis (concluded)

e Similarly,

e12 < ezt ey
€34 < ea3+ €13
e34 < e1stey

e Adding all four inequalities, dividing both sides by 2,
and adding the inequality

e14 + €23 < eqq + ea3 + e13 + eaq, we obtain
€12 + €34 + €14 + €23 < 2(e13 + e14 + €23 + €24).

e The above says our solution is at least half the optimum.
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