
Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in

time p(n) and has 2 nondeterministic choices at each

step.

• N is a polynomial Monte Carlo Turing machine

for a language L if the following conditions hold:

– If x ∈ L, then at least half of the 2p(n) computation

paths of N on x halt with “yes” where n = |x |.

– If x 6∈ L, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo

TMs is denoted RP (randomized polynomial time).a

aAdleman and Manders (1977).
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Comments on RP

• Nondeterministic steps can be seen as fair coin flips.

• There are no false positive answers.

• The probability of false negatives, 1 − ε, is at most 0.5.

• Any constant between 0 and 1 can replace 0.5.

– By repeating the algorithm k = d− 1
log2 1−εe times, the

probability of false negatives becomes (1 − ε)k ≤ 0.5.

• In fact, ε can be arbitrarily close to 0 as long as it is of

the order 1/p(n) for some polynomial p(n).

– − 1
log2 1−ε = O( 1

ε ) = O(p(n)).
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Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except

that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with extra demands

on the number of accepting paths.

• compositeness ∈ RP; primes ∈ coRP; primes ∈ RP.a

– In fact, primes ∈ P.

• RP ∪ coRP is another “plausible” notion of efficient

computation.

aAdleman and Huang (1987).
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ZPPa (Zero Probabilistic Polynomial)

• The class ZPP is defined as RP ∩ coRP.

• A language in ZPP has two Monte Carlo algorithms, one

with no false positives and the other with no false

negatives.

• If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

– A positive answer from the one without false

positives.

– A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L ∈ ZPP.}

2: {N1 has no false positives, and N2 has no false

negatives.}

3: while true do

4: if N1(x) = “yes” then

5: return “yes”;

6: end if

7: if N2(x) = “no” then

8: return “no”;

9: end if

10: end while
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ZPP (concluded)

• The expected running time for the correct answer to

emerge is polynomial.

– The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5.

– Let p(n) be the running time of each run.

– The expected running time for a definite answer is

∞
∑

i=1

0.5iip(n) = 2p(n).

• Essentially, ZPP is the class of problems that can be

solved without errors in expected polynomial time.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

Et Tu, RP?
1: {Suppose L ∈ RP.}

2: {N decides L without false positives.}

3: while true do

4: if N(x) = “yes” then

5: return “yes”;

6: end if

7: {But what to do here?}

8: end while

• You eventually get a “yes” if x ∈ L.

• But how to get a “no” when x 6∈ L?

• You have to sacrifice either correctness or bounded

running time.
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PP

• A language L is in the class PP if there is a

polynomial-time precise NTM N such that:

– For all inputs x, x ∈ L if and only if more than half

of the computations of N (i.e., 2p(n)−1 + 1 or up) on

input x end up with a “yes.”

– We say that N decides L by majority.

• majsat: is it true that the majority of the 2n truth

assignments to φ’s n variables satisfy it?

• majsat is PP-complete.

• PP is closed under complement.
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Large Deviations

• You have a biased coin.

• One side has probability 0.5 + ε to appear and the other

0.5 − ε, for some 0 < ε < 0.5.

• But you do not know which is which.

• How to decide which side is the more likely—with high

confidence?

• Answer: Flip the coin many times and pick the side that

appeared the most times.

• Question: Can you quantify the confidence?
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The Chernoff Bounda

Theorem 67 (Chernoff (1952)) Suppose x1, x2, . . . , xn

are independent random variables taking the values 1 and 0

with probabilities p and 1− p, respectively. Let X =
∑n

i=1 xi.

Then for all 0 ≤ θ ≤ 1,

prob[ X ≥ (1 + θ) pn ] ≤ e−θ2pn/3.

• The probability that the deviate of a binomial

random variable from its expected value decreases

exponentially with the deviation.

• The Chernoff bound is asymptotically optimal.

aHerman Chernoff (1923–).
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The Proof

• Let t be any positive real number.

• Then

prob[ X ≥ (1 + θ) pn ] = prob[ etX ≥ et(1+θ) pn ].

• Markov’s inequality (p. 399) generalized to real-valued

random variables says that

prob
[

etX ≥ kE[ etX ]
]

≤ 1/k.

• With k = et(1+θ) pn/E[ etX ], we have

prob[ X ≥ (1 + θ) pn ] ≤ e−t(1+θ)pnE[ etX ].
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The Proof (continued)

• Because X =
∑n

i=1 xi and xi’s are independent,

E[ etX ] = (E[ etx1 ])n = [ 1 + p(et − 1) ]n.

• Substituting, we obtain

prob[ X ≥ (1 + θ) pn ] ≤ e−t(1+θ) pn[ 1 + p(et − 1) ]n

≤ e−t(1+θ) pnepn(et−1)

as (1 + a)n ≤ ean for all a > 0.
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The Proof (concluded)

• With the choice of t = ln(1 + θ), the above becomes

prob[ X ≥ (1 + θ) pn ] ≤ epn[ θ−(1+θ) ln(1+θ) ].

• The exponent expands to − θ2

2 + θ3

6 − θ4

12 + · · · for

0 ≤ θ ≤ 1, which is less than

−
θ2

2
+

θ3

6
≤ θ2

(

−
1

2
+

θ

6

)

≤ θ2

(

−
1

2
+

1

6

)

= −
θ2

3
.
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Power of the Majority Rule

From prob[ X ≤ (1 − θ) pn ] ≤ e−
θ
2

2
pn (prove it):

Corollary 68 If p = (1/2) + ε for some 0 ≤ ε ≤ 1/2, then

prob

[

n
∑

i=1

xi ≤ n/2

]

≤ e−ε2n/2.

• The textbook’s corollary to Lemma 11.9 seems incorrect.

• Our original problem (p. 458) hence demands ≈ 1.4k/ε2

independent coin flips to guarantee making an error

with probability at most 2−k with the majority rule.
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BPPa (Bounded Probabilistic Polynomial)

• The class BPP contains all languages for which there is

a precise polynomial-time NTM N such that:

– If x ∈ L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

– If x 6∈ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

• N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/4?

• The number 3/4 bounds the probability of a right

answer away from 1/2.

• Any constant strictly between 1/2 and 1 can be used

without affecting the class BPP.

• In fact, 0.5 plus any inverse polynomial between 1/2 and

1,

0.5 +
1

p(n)
,

can be used.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + ε.

1: for i = 1, 2, . . . , 2k + 1 do

2: Run N on input x;

3: end for

4: if “yes” is the majority answer then

5: “yes”;

6: else

7: “no”;

8: end if
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Analysis

• The running time remains polynomial, being 2k + 1

times N ’s running time.

• By Corollary 68 (p. 463), the probability of a false

answer is at most e−ε2k.

• By taking k = d 2/ε2 e, the error probability is at most

1/4.

• As with the RP case, ε can be any inverse polynomial,

because k remains polynomial in n.
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Probability Amplification for BPP

• Let m be the number of random bits used by a BPP

algorithm.

– By definition, m is polynomial in n.

• With k = Θ(log m) in the majority vote algorithm, we

can lower the error probability to ≤ (3m)−1.
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Aspects of BPP

• BPP is the most comprehensive yet plausible notion of

efficient computation.

– If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

– In this aspect, BPP has effectively replaced P.

• (RP ∪ coRP) ⊆ (NP ∪ coNP).

• (RP ∪ coRP) ⊆ BPP.

• Whether BPP ⊆ (NP ∪ coNP) is unknown.

• But it is unlikely that NP ⊆ BPP (p. 483 and p. 765).
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coBPP

• The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

• An algorithm for L ∈ BPP becomes one for L̄ by

reversing the answer.

• So L̄ ∈ BPP and BPP ⊆ coBPP.

• Similarly coBPP ⊆ BPP.

• Hence BPP = coBPP.

• This approach does not work for RP.

• It did not work for NP either.
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BPP and coBPP
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“The Good, the Bad, and the Ugly”

BPP
P


ZPP


RP
coRP


NP
coNP
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Circuit Complexity

• Circuit complexity is based on boolean circuits instead

of Turing machines.

• A boolean circuit with n inputs computes a boolean

function of n variables.

• By identify true with 1 and false with 0, a boolean

circuit with n inputs accepts certain strings in { 0, 1 }n.

• To relate circuits with arbitrary languages, we need one

circuit for each possible input length n.
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Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence

C = (C0, C1, . . .) of boolean circuits, where Cn has n

boolean inputs.

• L ⊆ {0, 1}∗ has polynomial circuits if there is a family

of circuits C such that:

– The size of Cn is at most p(n) for some fixed

polynomial p.

– For input x ∈ {0, 1}∗, C| x | outputs 1 if and only if

x ∈ L.

∗ Cn accepts L ∩ {0, 1}n.
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Exponential Circuits Contain All Languages

• Theorem 15 (p. 156) implies that there are languages

that cannot be solved by circuits of size 2n/(2n).

• But exponential circuits can solve all problems.

Proposition 69 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2n+2.

• We will show that for any language L ⊆ {0, 1}∗,

L ∩ {0, 1}n can be decided by a circuit of size 2n+2.
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The Proof (concluded)

• Define boolean function f : {0, 1}n → {0, 1}, where

f(x1x2 · · ·xn) =







1 x1x2 · · ·xn ∈ L,

0 x1x2 · · ·xn 6∈ L.

• f(x1x2 · · ·xn) = (x1 ∧ f(1x2 · · ·xn)) ∨ (¬x1 ∧ f(0x2 · · ·xn)).

• The circuit size s(n) for f(x1x2 · · ·xn) hence satisfies

s(n) = 4 + 2s(n − 1)

with s(1) = 1.

• Solve it to obtain s(n) = 5 × 2n−1 − 4 ≤ 2n+2.
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The Circuit Complexity of P

Proposition 70 All languages in P have polynomial

circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 28 (p. 242), there is a circuit with

O(p(n)2) gates that accepts L ∩ {0, 1}n.

• The size of the circuit depends only on L and the length

of the input.

• The size of the circuit is polynomial in n.
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Languages That Polynomial Circuits Accept

• Do polynomial circuits accept only languages in P?

• There are undecidable languages that have polynomial

circuits.

– Let L ⊆ {0, 1}∗ be an undecidable language.

– Let U = {1n : the binary expansion of n is in L}.a

– U must be undecidable.

– U ∩ {1}n can be accepted by Cn that is trivially false

if 1n 6∈ U and trivially true if 1n ∈ U .

– The family of circuits (C0, C1, . . .) is polynomial in

size.

aAssume n’s leading bit is always 1 without loss of generality.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 478

A Patch

• Despite the simplicity of a circuit, the previous

discussions imply the following:

– Circuits are not a realistic model of computation.

– Polynomial circuits are not a plausible notion of

efficient computation.

• What gives?

• The effective and efficient constructibility of

C0, C1, . . . .
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Uniformity

• A family (C0, C1, . . .) of circuits is uniform if there is a

log n-space bounded TM which on input 1n outputs Cn.

– Circuits now cannot accept undecidable languages

(why?).

– The circuit family on p. 478 is not constructible by a

single Turing machine (algorithm).

• A language has uniformly polynomial circuits if

there is a uniform family of polynomial circuits that

decide it.
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Uniformly Polynomial Circuits and P

Theorem 71 L ∈ P if and only if L has uniformly

polynomial circuits.

• One direction was proved in Proposition 70 (p. 477).

• Now suppose L has uniformly polynomial circuits.

• Decide x ∈ L in polynomial time as follows:

– Let n = |x |.

– Build Cn in log n space, hence polynomial time.

– Evaluate the circuit with input x in polynomial time.

• Therefore L ∈ P.
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Relation to P vs. NP

• Theorem 71 implies that P 6= NP if and only if

NP-complete problems have no uniformly polynomial

circuits.

• A stronger conjecture: NP-complete problems have no

polynomial circuits, uniformly or not.

• The above is currently the preferred approach to proving

the P 6= NP conjecture—without success so far.

– Theorem 15 (p. 156) states that there are boolean

functions requiring 2n/(2n) gates to compute.

– In fact, almost all boolean functions do.
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BPP’s Circuit Complexity

Theorem 72 (Adleman (1978)) All languages in BPP

have polynomial circuits.

• Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.

– Something exists if its probability of existence is

nonzero.

• How to efficiently generate circuit Cn given 1n is not

known.

• If the construction of Cn is efficient, then P = BPP, an

unlikely result.
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The Proof

• Let L ∈ BPP be decided by a precise NTM N by clear

majority.

• We shall prove that L has polynomial circuits C0, C1, . . ..

• Suppose N runs in time p(n), where p(n) is a

polynomial.

• Let An = {a1, a2, . . . , am}, where ai ∈ {0, 1}p(n).

• Let m = 12(n + 1).

• Each ai ∈ An represents a sequence of nondeterministic

choices—i.e., a computation path—for N .
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The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with each sequence of

choices in An and then takes the majority of the m

outcomes.

• Because N with ai is a polynomial-time TM, it can be

simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 70 (p. 477).

• The size of Cn is therefore O(mp(n)2) = O(np(n)2), a

polynomial.

• We next prove the existence of An making Cn correct.
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The Circuit
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The Proof (continued)

• Call ai bad if it leads N to a false positive or a false

negative answer.

• Select An uniformly randomly.

• For each x ∈ {0, 1}n, 1/4 of the computations of N are

erroneous.

• Because the sequences in An are chosen randomly and

independently, the expected number of bad ai’s is m/4.

• By the Chernoff bound (p. 459), the probability that the

number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).
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The Proof (concluded)

• The error probability is < 2−(n+1) for each x ∈ {0, 1}n.

• The probability that there is an x such that An results

in an incorrect answer is < 2n2−(n+1) = 2−1.

– prob[ A ∪ B ∪ · · · ] ≤ prob[ A ] + prob[ B ] + · · · .

• So with probability one half, a random An produces a

correct Cn for all inputs of length n.

• Because this probability exceeds 0, an An that makes

majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.
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