Random Walk Works for 2sAT

Theorem 60 Suppose the random walk algorithm with
r = 2n? is applied to any satisfiable 2SAT problem with n
variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.
e Let 7' be a truth assignment such that 7' |= ¢.

e Let ¢(7) denote the expected number of repetitions of the
flipping step until a satisfying truth assignment is found
if our starting 7" differs from T in i values.

— Their Hamming distance is 1.
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The Proof

It can be shown that ¢(4) is finite.

#(0) = 0 because it means that 7' = 7" and hence T = ¢.

o If T # T or T is not equal to any other satisfying truth
assignment, then we need to flip at least once.

We flip to pick among the 2 literals of a clause not
satisfied by the present T

At least one of the 2 literals is true under T, because T

satisfies all clauses.

e So we have at least 0.5 chance of moving closer to 7.
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The Proof (continued)

e Thus
t(i—1)+t(E+1)
2

t(i) < +1

for0<i<n.

— Inequality is used because, for example, T" may differ
from 7' in both literals.

e It must also hold that
ttn) <t(n—1)+1

because at ¢ = n, we can only decrease 1.
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The Proof (continued)

e As we are only interested in upper bounds, we solve

z(0) = 0
z(n) = z(n—-1)+1
z(i) = :r(z—l)—}—a:(z—l—l)_'_L 0<i<n

2

e This is one-dimensional random walk with a reflecting

and an absorbing barrier.
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The Proof (continued)

e Add the equations up to obtain The Proof (Concluded)
(1) +z(2) + -+ x(n) e We therefore reach the conclusion that
0 1 2x(2 s 42 -2 —-1)+
_ z(0)+=(1) +2x(2) + +2x(n )+ z(n —1) + z(n) 1) < (i) < 2(n) = n,

+n+z(n—1). )
e So the expected number of steps is at most n2.

e Simplify to yield
(1) 4+ z(n) —z(n—1)

e The algorithm picks a running time 2n?.

5 =n. e This amounts to invoking the Markov inequality (p. 399)
with £ = 2, with the consequence of having a probability
e Asz(n) —xz(n—1) =1, we have of 0.5.
z(1) =2n—1.
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Boosting the Performance
The Proof (continued) e We can pick » = 2mn? to have an error probability of
: . < -1 s i ity.
o Iteratively, we obtain < (2m)™* by Markov’s inequality
e Alternatively, with the same running time, we can run
w(2) = 4n — 4, o 29 : : ]
the “r = 2n*” algorithm m times.
e But the error probability is reduced to < 27!
x(i) = 2in—i%

e Again, the gain comes from the fact that Markov’s

e The worst case happens when i = n, in which case inequality does not take advantage of any specific

feature of the random variable.
z(n) =n”.
e The gain also comes from the fact that the two

algorithms are different.
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How about Random CNF?

e Select m clauses independently and uniformly from the

set of all possible disjunctions of k distinct, .

: . . The Density Attack for PRIMES
non-complementary literals with n boolean variables.
1: Pick k € {2,..., N — 1} randomly; {Assume N > 2.}

e Let m = cn. 2: if k| N then
e The formula is satisfiable with probability approaching 1 3:  return “N is composite”;

as n — oo if ¢ < ¢ for some ¢ < 2FIn2 — O(1). 4: else

. . . - 5:  return “N is a prime”;
e The formula is unsatisfiable with probability 6 dif P ’
cend i

approaching 1 as n — oo if ¢ > ¢ for some

cx > 282 — O(k).
e The above bounds are not tight yet.
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Analysis®
e Suppose N = P(@, a product of 2 primes.

e The probability of success is
Primality Tests

oN) _ . (P=1@-1) _ P+Q-1
. . . <l—-—+~=1- = .
e PRIMES asks if a number N is a prime. N PQ PQ
e The classic algorithm tests if k| N for k =2,3,...,VN. e In the case where P ~ (), this probability becomes
e But it runs in Q(2"/?) steps, where n = | N | = log, N. 1 1 2
< St =m =
P Q VN

e This probability is exponentially small.

aSee also p. 358.
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Square Roots Modulo a Prime

The Fermat Test for Primality e Equation 22 = a mod p has at most two (distinct) roots
. . by Lemma 55 (p. 365).
Fermat’s “little” theorem on p. 360 suggests the following

primality test for any given number p: — The roots are called square roots.

1: Pick a number a randomly from {1,2,..., N — 1}; — Numbers a with square roots and ged(a,p) = 1 are
2: if a¥~1 % 1 mod N then called quadratic residues.
3. return “N is composite”; * They are 12 mod p,2? mod p, ..., (p — 1)* mod p.
4: else e We shall show that a number either has two roots or has
5. return “N is probably a prime”; none, and testing which one is true is trivial.
6: end if
e There are no known efficient deterministic algorithms to
find the roots.
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Euler's Test

Lemma 61 (Euler) Let p be an odd prime and
a # 0 mod p.

The Fermat Test for Primality (concluded) L IFa® D/ = 1 mod p, then 22 = a mod p has fwo roofs.

e Unfortunately, there are composite numbers called 2. Ifa® /2 £ 1 mod p, then a® /2 = —1 mod p and

Carmichael numbers that will pass the Fermat test 9
x* = a mod p has no roots.
for all a € {1,2,...,N — 1}.

Let 7 be a primitive root of p.
e There are infinitely many Carmichael numbers.?

By Fermat’s “little” theorem, (?~1)/2 is a square root of
1, so r(P~1/2 = +1 mod p.

aAlford, Granville, and Pomerance (1992).

But as r is a primitive root, 7?~1/2 £ 1 mod p.

e Hence r»~1/2 = —1 mod p.
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The Proof (continued)
e Suppose a = r?% for some 1 < j < (p—1)/2.

e Then a?~1/2 = i’=1) = 1 mod p and its two distinct
roots are 17, —pJ (= pit(P=1)/2),
— If 7 = —1J mod p, then 2r7 = 0 mod p, which implies

rJ = 0 mod p, a contradiction.

e As1<j<(p—1)/2, there are (p — 1)/2 such a’s.

The Legendre Symbol* and Quadratic Residuacity Test

e By Lemma 61 (p. 420) a(?~Y/2 mod p = +1 for
a # 0 mod p.

e For odd prime p, define the Legendre symbol (a|p) as
0 if p|a,

(a]p) = 1 if a is a quadratic residue modulo p,

—1 if a is a quadratic nonresidue modulo p.

e Euler’s test implies a(P~1/2 = (a|p) mod p for any odd
prime p and any integer a.

e Note that (ab|p) = (alp)(b|p)-

aAndrien-Marie Legendre (1752-1833).
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The Proof (concluded)

Each such a has 2 distinct square roots.

The square roots of all the a’s are distinct.

— The square roots of different a’s must be different.

Hence the set of square roots is {1,2,...,p— 1}.
— That is,
Uicacp_ 112 2> =amod p} ={1,2,...,p—1}.
o If ¢ = r%*! then it has no roots because all the square

roots have been taken.

o aP=1/2 = [p(P=1)/2)2j+1 — (_1)2*! = _1 mod p.
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Gauss's Lemma

Lemma 62 (Gauss) Let p and q be two odd primes. Then
(qlp) = (=1)™, where m is the number of residues in
R={igmodp:1<i<(p—1)/2} that are greater than
(p—1)/2.
e All residues in R are distinct.
— If ig = jq mod p, then p|(j — i) q or plg.
e No two elements of R add up to p.
— If ig + jg = 0 mod p, then p|(i + j) q or plq.
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The Proof (continued)

e Consider the set R’ of residues that result from R if we
replace each of the m elements a € R such that

a>((p—-1)/2by p—a.

e All residues in R’ are now at most (p — 1)/2.

e In fact, ' = {1,2,...,(p — 1)/2} (see illustration next
page).
— Otherwise, two elements of R would add up to p.
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p=7T7and g=>5.
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The Proof (concluded)

e Alternatively, R' = {+igmodp:1<i<(p—1)/2},
where exactly m of the elements have the minus sign.

e Take the product of all elements in the two
representations of R'.

e So[(p—1)/2]! = (—1)™qP~V/2[(p — 1)/2]! mod p.

e Because ged([(p — 1)/2]!, p) = 1, the lemma follows.
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Legendre's Law of Quadratic Reciprocity®
e Let p and ¢ be two odd primes.

e The next result says their Legendre symbols are distinct

if and only if both numbers are 3 mod 4.

Lemma 63 (Legendre (1785), Gauss)

—1g—1

(pla)(alp) = (1) =,

aFirst stated by Euler in 1751. Legendre (1785) did not give a correct
proof. Gauss proved the theorem when he was 19. He gave at least 6
different proofs during his life. The 152nd proof appeared in 1963.
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The Proof (continued)

e On one hand, this is just Zgizl)/zi mod 2.

e On the other hand, the sum equals

(p—1)/2 ;
Z (qi—p{—qJ>+mpmod2
p

i=1
(p—1)/2 (p—1)/2

= q Z 1—p Z { J + mp mod 2.
i=1

— Signs are irrelevant under mod?2.

— m is as in Lemma 62 (p. 424).

e Sum the elements of R’ in the previous proof in mod2.
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The Proof (concluded)

Z(p n/2 Lﬂj is the number of integral points under the
liney = (g/p)xfor 1 <z < (p—1)/2.

Gauss’s lemma (p. 424) says (q|p) = (—=1)™.

Repeat the proof with p and ¢ reversed.

We obtain (p|q) is —1 raised to the number of integral
points above the line y = (¢/p)x for 1 <y < (¢ —1)/2.

So (plq)(q|p) is —1 raised to the total number of integral

inta i p—1 q—1 ich o P=1 a=1
points in the 55— x 5= rectangle, which is 5= 45=.
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The Proof (continued)

e Ignore odd multipliers to make the sum equal

(p—1)/2 (r—1)/2

Z i — Z {ﬂJ +m mod 2.
i=1 =1 LP
e Equate the above with 251;11)/21. mod 2 to obtain

(p—1)/2 ;
m = Z {—qJ mod 2.
p

i=1
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Eisenstein’'s Rectangle

P.9)

(q-l)/Z* e o o o o

p=11land ¢ =7.
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Remarks?

i L%J :(qil)/Q Whelli: (p*l)/2 andp>q (as on
p. 432).

— Note that % = Q(% - ﬁ)

— Hence
=Bt oy (T4 2) =G+vre
W > q(%—%)z(q—l)ﬂ

e Similarly, [%‘11 =(¢—1)/2 wheni=(p—1)/2 and p < q.

a0bservation and proof by Mr. Wei-Cheng Cheng (R93922108) on
December 1, 2004.

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for
arguments for which it is defined.

1. (ab|m) = (a|m)(b|m).

2. (a|mimg) = (a|mq)(a|mz).

3. If a = b mod m, then (a|m) = (b|m).

4. (=1]m) = (=1)(m=1/2 (by Lemma 62 on p. 424).
5. (2|m) = (=1)(™ =1/ (by Lemma 62 on p. 424).

6. If a and m are both odd, then
(a|m)(m|a) = (=1)le- D=0/,
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The Jacobi Symbol?

The Legendre symbol only works for odd prime moduli.

The Jacobi symbol (a|m) extends it to cases where m

is not prime.

Let m = p1ps - - - pr be the prime factorization of m.

e When m > 1 is odd and ged(a,m) = 1, then
k
(alm) = TT(alpo).
i=1

e Define (a|1) = 1.

aCarl Jacobi (1804-1851).

Calculation of (2200]999)

Similar to the Euclidean algorithm and does not require
factorization.
(202]999) = (—1)%*~1/%(101|999)

= (=1)"*7°(101]999) = (101]999)

= (—1)00E/4999|101) = (—1)**°°(999]101)

—  (999]101) = (90/101) = (—1)O*~D/3(45]101)

= (=1)""""(45|101) = —(45|101)

= (=)D (101|45) = —(101]45) = —(11]45)

= —(—1)1OUNy5)11) = —(45]11)

= —(111) = —(11]1) = —1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 64 The group of set ®(n) under multiplication
mod n has a primitive root if and only if n is either 1, 2, 4,
p®, or 2p® for some nonnegative integer k and and odd

prime p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Test?®

Lemma 65 If (M|N) = MW =Y/2mod N for all
M € ®(N), then N is prime. (Assume N is odd.)

e Assume N = mp, where p is an odd prime, ged(m,p) =1,
and m > 1 (not necessarily prime).

e Let r € ®(p) such that (r|p) = —1.

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M = rmodp,
M = 1modm.

aClement Hsiao (R88067) pointed out that the textbook’s proof in
Lemma 11.8 is incorrect while he was a senior in January 1999.
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The Proof (continued)
e By the hypothesis,

MN-1)/2 _ (M|N)=(M|p)(M]|m)=—1mod N.

e Hence
MWN=D/2 — _1 mod m.

e But because M = 1 mod m,
M®P=D/2 = 1 mod m,

a contradiction.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 439

The Proof (continued)

e Second, assume that N = p®, where p is an odd prime
and a > 2.

e By Theorem 64 (p. 437), there exists a primitive root r
modulo p®.

e From the assumption,
2
MN-1 = {M(N*”/Q} = (M|N)? = 1 mod N

for all M € ®(N).
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The Proof (continued)

o Asr € ®(N) (prove it), we have
rN=1 =1 mod N.
e As r’s exponent modulo N = p? is ¢(N) = p*~1(p — 1),
P - 1IN -1,
which implies that p| N — 1.

e But this is impossible given that p| V.
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The Proof (continued)

Third, assume that N = mp®, where p is an odd prime,
ged(m,p) =1, m > 1 (not necessarily prime), and a is

even.

The proof mimics that of the second case.

By Theorem 64 (p. 437), there exists a primitive root r
modulo p®.

From the assumption,
2
MN-1 = [MUH)/?} — (M|N)? =1 mod N

for all M € ®(N).
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The Proof (continued)

e In particular,
MY =1 mod p* (6)

for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that
M = rmodp®,
M = 1modm.

e Because M = r mod p® and Eq. (6),

V=1 =1 mod p°.
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The Proof (concluded)
e As r’s exponent modulo N = p® is ¢(N) = p*~L(p — 1),
-1 |IN -1,
which implies that p| N — 1.

e But this is impossible given that p| N.
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1: if N is even but N # 2 then
. . 2:  return “N is composite”;
The Number of Witnesses to Compositeness 3. else if N — 2 then
Theorem 66 (Solovay and Strassen (1977)) If N is an 4 return “N is a prime”;
odd composite, then (M|N) # MWN=1/2 mod N for at least & efld if
half of M € ®(N). 6: Pick M € {2,3,..., N — 1} randomly;
7. if gcd(M, N) > 1 then
e By Lemma 65 (p. 438) there is at least one a € ®(N) 8  return “N is a composite”;
such that (a|N) # a™¥=1/2 mod N. 9: else
o 10:  if (M|N) # M®™~Y/2 mod N then
o Let B ={b1,ba,...,bp} C ®(N) be the set of all distinct wnr .
) (N=1)/2 11: return “N is composite”;
residues such that (b;|N) = b, mod N. 120 else
o Let aB = {ab; mod N :i =1,2,...,k}. 13 return “N is a prime”;
14: end if
15: end if
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Analysis
The Proof (concluded) . . _ o
e The algorithm certainly runs in polynomial time.

o |aB|=k.
— ab; = abj mod N implies N|a(b; — b;), which is
impossible because ged(a, N) =1 and N > |b; — bj].

e There are no false positives (for COMPOSITENESS).

is always correct.
e aB N B = () because

(aby) N TD/2 = o(NEOEINTIIZ 2 (0] N) (bs|N) = (abi| N).

— When the algorithm says the number is composite, it

The probability of a false negative is at most one half.

— When the algorithm says the number is a prime, it

e Combining the above two results, we know may err.
1B — If the input is composite, then the probability that
—— < 0.5. ; .
#(N) the algorithm errs is one half.

The error probability can be reduced but not eliminated.
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The Improved Density Attack for COMPOSITENESS

Witnesses to
compositeness of
N via common
factor

Witnesses to
compositeness of
N via Jacobi
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