
Random Walk Works for 2sat

Theorem 60 Suppose the random walk algorithm with

r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= φ.

• Let t(i) denote the expected number of repetitions of the

flipping step until a satisfying truth assignment is found

if our starting T differs from T̂ in i values.

– Their Hamming distance is i.
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The Proof

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= φ.

• If T 6= T̂ or T is not equal to any other satisfying truth

assignment, then we need to flip at least once.

• We flip to pick among the 2 literals of a clause not

satisfied by the present T .

• At least one of the 2 literals is true under T̂ , because T̂

satisfies all clauses.

• So we have at least 0.5 chance of moving closer to T̂ .
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The Proof (continued)

• Thus

t(i) ≤ t(i − 1) + t(i + 1)

2
+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ

from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n − 1) + 1

because at i = n, we can only decrease i.
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The Proof (continued)

• As we are only interested in upper bounds, we solve

x(0) = 0

x(n) = x(n − 1) + 1

x(i) =
x(i − 1) + x(i + 1)

2
+ 1, 0 < i < n

• This is one-dimensional random walk with a reflecting

and an absorbing barrier.
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The Proof (continued)

• Add the equations up to obtain

x(1) + x(2) + · · · + x(n)

=
x(0) + x(1) + 2x(2) + · · · + 2x(n − 2) + x(n − 1) + x(n)

2
+n + x(n − 1).

• Simplify to yield

x(1) + x(n) − x(n − 1)

2
= n.

• As x(n) − x(n − 1) = 1, we have

x(1) = 2n − 1.
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The Proof (continued)

• Iteratively, we obtain

x(2) = 4n − 4,

...

x(i) = 2in − i2.

• The worst case happens when i = n, in which case

x(n) = n2.
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The Proof (concluded)

• We therefore reach the conclusion that

t(i) ≤ x(i) ≤ x(n) = n2.

• So the expected number of steps is at most n2.

• The algorithm picks a running time 2n2.

• This amounts to invoking the Markov inequality (p. 399)

with k = 2, with the consequence of having a probability

of 0.5.
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Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

≤ (2m)−1 by Markov’s inequality.

• Alternatively, with the same running time, we can run

the “r = 2n2” algorithm m times.

• But the error probability is reduced to ≤ 2−m!

• Again, the gain comes from the fact that Markov’s

inequality does not take advantage of any specific

feature of the random variable.

• The gain also comes from the fact that the two

algorithms are different.
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How about Random CNF?

• Select m clauses independently and uniformly from the

set of all possible disjunctions of k distinct,

non-complementary literals with n boolean variables.

• Let m = cn.

• The formula is satisfiable with probability approaching 1

as n → ∞ if c < ck for some ck < 2k ln 2 − O(1).

• The formula is unsatisfiable with probability

approaching 1 as n → ∞ if c > ck for some

ck > 2k ln 2 − O(k).

• The above bounds are not tight yet.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 413

Primality Tests

• primes asks if a number N is a prime.

• The classic algorithm tests if k |N for k = 2, 3, . . . ,
√

N .

• But it runs in Ω(2n/2) steps, where n = |N | = log2 N .
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The Density Attack for primes

1: Pick k ∈ {2, . . . , N − 1} randomly; {Assume N > 2.}
2: if k |N then

3: return “N is composite”;

4: else

5: return “N is a prime”;

6: end if
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Analysisa

• Suppose N = PQ, a product of 2 primes.

• The probability of success is

< 1 − φ(N)

N
= 1 − (P − 1)(Q − 1)

PQ
=

P + Q − 1

PQ
.

• In the case where P ≈ Q, this probability becomes

<
1

P
+

1

Q
≈ 2√

N
.

• This probability is exponentially small.

aSee also p. 358.
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The Fermat Test for Primality

Fermat’s “little” theorem on p. 360 suggests the following

primality test for any given number p:

1: Pick a number a randomly from {1, 2, . . . , N − 1};
2: if aN−1 6= 1 mod N then

3: return “N is composite”;

4: else

5: return “N is probably a prime”;

6: end if
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The Fermat Test for Primality (concluded)

• Unfortunately, there are composite numbers called

Carmichael numbers that will pass the Fermat test

for all a ∈ {1, 2, . . . , N − 1}.

• There are infinitely many Carmichael numbers.a

aAlford, Granville, and Pomerance (1992).
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Square Roots Modulo a Prime

• Equation x2 = a mod p has at most two (distinct) roots

by Lemma 55 (p. 365).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are

called quadratic residues.

∗ They are 12 mod p, 22 mod p, . . . , (p − 1)2 mod p.

• We shall show that a number either has two roots or has

none, and testing which one is true is trivial.

• There are no known efficient deterministic algorithms to

find the roots.
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Euler’s Test

Lemma 61 (Euler) Let p be an odd prime and

a 6= 0 mod p.

1. If a(p−1)/2 = 1 mod p, then x2 = a mod p has two roots.

2. If a(p−1)/2 6= 1 mod p, then a(p−1)/2 = −1 mod p and

x2 = a mod p has no roots.

• Let r be a primitive root of p.

• By Fermat’s “little” theorem, r(p−1)/2 is a square root of

1, so r(p−1)/2 = ±1 mod p.

• But as r is a primitive root, r(p−1)/2 6= 1 mod p.

• Hence r(p−1)/2 = −1 mod p.
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The Proof (continued)

• Suppose a = r2j for some 1 ≤ j ≤ (p − 1)/2.

• Then a(p−1)/2 = rj(p−1) = 1 mod p and its two distinct

roots are rj ,−rj(= rj+(p−1)/2).

– If rj = −rj mod p, then 2rj = 0 mod p, which implies

rj = 0 mod p, a contradiction.

• As 1 ≤ j ≤ (p − 1)/2, there are (p − 1)/2 such a’s.
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The Proof (concluded)

• Each such a has 2 distinct square roots.

• The square roots of all the a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is {1, 2, . . . , p − 1}.
– That is,

⋃

1≤a≤p−1{x : x2 = a mod p} = {1, 2, . . . , p − 1}.

• If a = r2j+1, then it has no roots because all the square

roots have been taken.

• a(p−1)/2 = [ r(p−1)/2 ]2j+1 = (−1)2j+1 = −1 mod p.
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The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 61 (p. 420) a(p−1)/2 mod p = ±1 for

a 6= 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) =















0 if p | a,

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

• Euler’s test implies a(p−1)/2 = (a | p) mod p for any odd

prime p and any integer a.

• Note that (ab|p) = (a|p)(b|p).

aAndrien-Marie Legendre (1752–1833).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 423

Gauss’s Lemma

Lemma 62 (Gauss) Let p and q be two odd primes. Then

(q|p) = (−1)m, where m is the number of residues in

R = {iq mod p : 1 ≤ i ≤ (p − 1)/2} that are greater than

(p − 1)/2.

• All residues in R are distinct.

– If iq = jq mod p, then p|(j − i) q or p|q.

• No two elements of R add up to p.

– If iq + jq = 0 mod p, then p|(i + j) q or p|q.
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The Proof (continued)

• Consider the set R′ of residues that result from R if we

replace each of the m elements a ∈ R such that

a > (p − 1)/2 by p − a.

• All residues in R′ are now at most (p − 1)/2.

• In fact, R′ = {1, 2, . . . , (p − 1)/2} (see illustration next

page).

– Otherwise, two elements of R would add up to p.
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p = 7 and q = 5.
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The Proof (concluded)

• Alternatively, R′ = {±iq mod p : 1 ≤ i ≤ (p − 1)/2},
where exactly m of the elements have the minus sign.

• Take the product of all elements in the two

representations of R′.

• So [(p − 1)/2]! = (−1)mq(p−1)/2[(p − 1)/2]! mod p.

• Because gcd([(p − 1)/2]!, p) = 1, the lemma follows.
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Legendre’s Law of Quadratic Reciprocitya

• Let p and q be two odd primes.

• The next result says their Legendre symbols are distinct

if and only if both numbers are 3 mod 4.

Lemma 63 (Legendre (1785), Gauss)

(p|q)(q|p) = (−1)
p−1
2

q−1
2 .

aFirst stated by Euler in 1751. Legendre (1785) did not give a correct

proof. Gauss proved the theorem when he was 19. He gave at least 6

different proofs during his life. The 152nd proof appeared in 1963.
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The Proof (continued)

• Sum the elements of R′ in the previous proof in mod2.

• On one hand, this is just
∑(p−1)/2

i=1 i mod 2.

• On the other hand, the sum equals

(p−1)/2
∑

i=1

(

qi − p

⌊

iq

p

⌋)

+ mp mod 2

=



q

(p−1)/2
∑

i=1

i − p

(p−1)/2
∑

i=1

⌊

iq

p

⌋



 + mp mod 2.

– Signs are irrelevant under mod2.

– m is as in Lemma 62 (p. 424).
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The Proof (continued)

• Ignore odd multipliers to make the sum equal




(p−1)/2
∑

i=1

i −
(p−1)/2

∑

i=1

⌊

iq

p

⌋



 + m mod 2.

• Equate the above with
∑(p−1)/2

i=1 i mod 2 to obtain

m =

(p−1)/2
∑

i=1

⌊

iq

p

⌋

mod 2.
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The Proof (concluded)

• ∑(p−1)/2
i=1 b iq

p c is the number of integral points under the

line y = (q/p) x for 1 ≤ x ≤ (p − 1)/2.

• Gauss’s lemma (p. 424) says (q|p) = (−1)m.

• Repeat the proof with p and q reversed.

• We obtain (p|q) is −1 raised to the number of integral

points above the line y = (q/p) x for 1 ≤ y ≤ (q − 1)/2.

• So (p|q)(q|p) is −1 raised to the total number of integral

points in the p−1
2 × q−1

2 rectangle, which is p−1
2

q−1
2 .
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Eisenstein’s Rectangle

(
p
,
q
)


(
p
 - 1)/2


(
q
 - 1)/2


p = 11 and q = 7.
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Remarksa

• b iq
p c = (q − 1)/2 when i = (p − 1)/2 and p > q (as on

p. 432).

– Note that [ (p−1)/2 ]q
p = q( 1

2 − 1
2p).

– Hence

[ (p − 1)/2 ]q

p
< q

(

1

2
+

1

2q

)

= (q + 1)/2,

[ (p − 1)/2 ]q

p
> q

(

1

2
− 1

2q

)

= (q − 1)/2.

• Similarly, d iq
p e = (q − 1)/2 when i = (p− 1)/2 and p < q.

aObservation and proof by Mr. Wei-Cheng Cheng (R93922108) on

December 1, 2004.
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The Jacobi Symbola

• The Legendre symbol only works for odd prime moduli.

• The Jacobi symbol (a |m) extends it to cases where m

is not prime.

• Let m = p1p2 · · · pk be the prime factorization of m.

• When m > 1 is odd and gcd(a, m) = 1, then

(a|m) =
k

∏

i=1

(a | pi).

• Define (a | 1) = 1.

aCarl Jacobi (1804–1851).
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for

arguments for which it is defined.

1. (ab |m) = (a |m)(b |m).

2. (a |m1m2) = (a |m1)(a |m2).

3. If a = b mod m, then (a |m) = (b |m).

4. (−1 |m) = (−1)(m−1)/2 (by Lemma 62 on p. 424).

5. (2 |m) = (−1)(m
2−1)/8 (by Lemma 62 on p. 424).

6. If a and m are both odd, then

(a |m)(m | a) = (−1)(a−1)(m−1)/4.
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Calculation of (2200|999)

Similar to the Euclidean algorithm and does not require

factorization.

(202|999) = (−1)(999
2
−1)/8(101|999)

= (−1)124750(101|999) = (101|999)

= (−1)(100)(998)/4(999|101) = (−1)24950(999|101)

= (999|101) = (90|101) = (−1)(101
2
−1)/8(45|101)

= (−1)1275(45|101) = −(45|101)

= −(−1)(44)(100)/4(101|45) = −(101|45) = −(11|45)

= −(−1)(10)(44)/4(45|11) = −(45|11)

= −(1|11) = −(11|1) = −1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 64 The group of set Φ(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,

pk, or 2pk for some nonnegative integer k and and odd

prime p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Testa

Lemma 65 If (M |N) = M (N−1)/2 mod N for all

M ∈ Φ(N), then N is prime. (Assume N is odd.)

• Assume N = mp, where p is an odd prime, gcd(m, p) = 1,

and m > 1 (not necessarily prime).

• Let r ∈ Φ(p) such that (r | p) = −1.

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod p,

M = 1 mod m.

aClement Hsiao (R88067) pointed out that the textbook’s proof in

Lemma 11.8 is incorrect while he was a senior in January 1999.
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The Proof (continued)

• By the hypothesis,

M (N−1)/2 = (M |N) = (M | p)(M |m) = −1 mod N.

• Hence

M (N−1)/2 = −1 mod m.

• But because M = 1 mod m,

M (N−1)/2 = 1 mod m,

a contradiction.
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The Proof (continued)

• Second, assume that N = pa, where p is an odd prime

and a ≥ 2.

• By Theorem 64 (p. 437), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[

M (N−1)/2
]2

= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• As r ∈ Φ(N) (prove it), we have

rN−1 = 1 mod N.

• As r’s exponent modulo N = pa is φ(N) = pa−1(p − 1),

pa−1(p − 1) |N − 1,

which implies that p |N − 1.

• But this is impossible given that p |N .
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The Proof (continued)

• Third, assume that N = mpa, where p is an odd prime,

gcd(m, p) = 1, m > 1 (not necessarily prime), and a is

even.

• The proof mimics that of the second case.

• By Theorem 64 (p. 437), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[

M (N−1)/2
]2

= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• In particular,

MN−1 = 1 mod pa (6)

for all M ∈ Φ(N).

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod pa,

M = 1 mod m.

• Because M = r mod pa and Eq. (6),

rN−1 = 1 mod pa.
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The Proof (concluded)

• As r’s exponent modulo N = pa is φ(N) = pa−1(p − 1),

pa−1(p − 1) |N − 1,

which implies that p |N − 1.

• But this is impossible given that p |N .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 444



The Number of Witnesses to Compositeness

Theorem 66 (Solovay and Strassen (1977)) If N is an

odd composite, then (M |N) 6= M (N−1)/2 mod N for at least

half of M ∈ Φ(N).

• By Lemma 65 (p. 438) there is at least one a ∈ Φ(N)

such that (a|N) 6= a(N−1)/2 mod N .

• Let B = {b1, b2, . . . , bk} ⊆ Φ(N) be the set of all distinct

residues such that (bi|N) = b
(N−1)/2
i mod N .

• Let aB = {abi mod N : i = 1, 2, . . . , k}.
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The Proof (concluded)

• |aB| = k.

– abi = abj mod N implies N |a(bi − bj), which is

impossible because gcd(a, N) = 1 and N > |bi − bj |.
• aB ∩ B = ∅ because

(abi)
(N−1)/2 = a

(N−1)/2
b
(N−1)/2
i 6= (a|N)(bi|N) = (abi|N).

• Combining the above two results, we know

|B |
φ(N)

≤ 0.5.
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1: if N is even but N 6= 2 then

2: return “N is composite”;

3: else if N = 2 then

4: return “N is a prime”;

5: end if

6: Pick M ∈ {2, 3, . . . , N − 1} randomly;

7: if gcd(M, N) > 1 then

8: return “N is a composite”;

9: else

10: if (M |N) 6= M (N−1)/2 mod N then

11: return “N is composite”;

12: else

13: return “N is a prime”;

14: end if

15: end if
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Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for compositeness).

– When the algorithm says the number is composite, it

is always correct.

• The probability of a false negative is at most one half.

– When the algorithm says the number is a prime, it

may err.

– If the input is composite, then the probability that

the algorithm errs is one half.

• The error probability can be reduced but not eliminated.
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The Improved Density Attack for compositeness

All numbers < 
N


Witnesses to


compositeness of


N
 via Jacobi


Witnesses to


compositeness of


N
 via common


factor


c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 449


