The Fermat-Euler Theorem^a

Corollary 54 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$.

- The proof is similar to that of Lemma 53 (p. 360).
- Consider $a\Phi(n) = \{am \mod n : m \in \Phi(n)\}.$
- $a\Phi(n) = \Phi(n)$.
 - $-a\Phi(n)\subseteq\Phi(n)$ as a remainder must be between 0 and n-1 and relatively prime to n.
 - Suppose $am = am' \mod n$ for m' < m < n, where $m, m' \in \Phi(n)$.
 - That means $a(m-m')=0 \mod n$, and n divides a or m-m', which is impossible.

^aProof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.

The Proof (concluded)

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a\Phi(n)$ to yield $a^{\Phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a\Phi(n) = \Phi(n)$,

$$\prod_{m \in \Phi(n)} m = a^{\Phi(n)} \left(\prod_{m \in \Phi(n)} m \right) \bmod n.$$

• Finally, $a^{\Phi(n)} = 1 \mod n$ because $n \not \mid \prod_{m \in \Phi(n)} m$.