The Proof (concluded)

e r?(P) = 1 mod p by the Fermat-Euler theorem (p. 362).

A Few Calculations e Because p is not a prime, ¢(p) < p — 1.

* Letp=13. e Let k be the smallest integer such that r* = 1 mod p.

e From p. 362, we know ¢(p — 1) = 4. « Ask<o(p), k<p—1.

o Hence R(12) = 4. e Let g be a prime divisor of (p — 1)/k > 1.

o And there are 4 primitives roots of p. e Then k|(p— 1)/q

e As ®(p—1) ={1,5,7,11}, the primitive roots are

e Therefore, by virtue of the definition of k,
g, 9°,97, g'! for any primitive root g.

r®=1/4 = 1 mod p.

e But this violates the 2nd condition.
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The Other Direction of Theorem 47 (p. 346) Function Problems
e We must show p is a prime only if there is a number r e Decisions problem are yes/no problems (SAT, TSP (D),
(called primitive root) such that etc.).

1. 7»=' =1 mod p, and

2. r(P=1)/2 £ 1 mod p for all prime divisors ¢ of p — 1.

Function problems require a solution (a satisfying

truth assignment, a best TSP tour, etc.).

e Suppose p is not a prime. e Optimization problems are clearly function problems.
e We proceed to show that no primitive roots exist. e What is the relation between function and decision
_ ?
e Suppose 7771 =1 mod p (note ged(r,p) = 1). problems?
. .. . : : ?
e We will show that the 2nd condition must be violated. e Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

e If we know how to generate a solution, we can solve the
corresponding decision problem.

— If you can find a satisfying truth assignment
efficiently, then SAT is in P.

— If you can find the best TSP tour efficiently, then TSP
(D) is in P.

e But decision problems can be as hard as the
corresponding function problems.
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FSAT

e FSAT is this function problem:
— Let ¢(x1,22,...,2,) be a boolean expression.

— If ¢ is satisfiable, then return a satisfying truth

assignment.

— Otherwise, return “no.”

e We next show that if SAT € P, then FSAT has a
polynomial-time algorithm.

An Algorithm for FSAT Using SAT
tti=¢
if ¢ € sAT then
fori=1,2,...,ndo
if ¢[x; = true] € sAT then
t:=tU{z; = true};
¢ = ¢[x; = true];
else
t:=tU{x; = false};
¢ = ¢[x; = false];
end if
end for

—
M HE 2

return ¢;

—
w

: else

H
>

return “no”;
: end if

—
t
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Analysis
e There are < n + 1 calls to the algorithm for saT.?

e Shorter boolean expressions than ¢ are used in each call
to the algorithm for SAT.

e So if SAT can be solved in polynomial time, so can FSAT.

e Hence SAT and FSAT are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
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TSP and TSP (D) Revisited
We are given n cities 1,2,...,n and integer distances
di; = dj; between any two cities ¢ and j.
The TSP asks for a tour with the shortest total distance
(not just the shortest total distance, as earlier).
— The shortest total distance must be at most 2/%/,

where z is the input.

TSP (D) asks if there is a tour with a total distance at
most B.

We next show that if TSP (D) € P, then TSP has a
polynomial-time algorithm.
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Analysis

An edge that is not on any optimal tour will be
eliminated, with its d;; set to C' + 1.

An edge which is not on all remaining optimal tours will

also be eliminated.

So the algorithm ends with n edges which are not

eliminated (why?).
There are O(|z | +n?) calls to the algorithm for TSP (D).

So if TSP (D) can be solved in polynomial time, so can
TSP.

Hence TSP (D) and TSP are equally hard (or easy).
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An Algorithm for TSP Using TSP (D)

Perform a binary search over interval [0, 2l | by calling
TSP (D) to obtain the shortest distance C;
fori,j=1,2,...,ndo

Call Tsp (D) with B =C and d;; = C + 1,

if “no” then

Restore d;; to old value; {Edge [i,j] is critical.}

end if

end for

return the tour with edges whose d;; < C;
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Randomized Computation
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I know that half my advertising works,
I just don’t know which half.
— John Wanamaker

I know that half my advertising is
a waste of money,

I just don’t know which half!

— McGraw-Hill ad.
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Randomized Algorithms®
Randomized algorithms flip unbiased coins.

There are important problems for which there are no
known efficient deterministic algorithms but for which
very efficient randomized algorithms exist.

— Extraction of square roots, for instance.

There are problems where randomization is necessary.

— Secure protocols.

Randomized version can be more efficient.

— Parallel algorithm for maximal independent set.

Are randomized algorithms algorithms?

a2Rabin (1976); Solovay and Strassen (1977).

Bipartite Perfect Matching
e We are given a bipartite graph G = (U,V, E).
— U ={ui,ug,...,uy}
-V ={v,v9,...,0,}.
- ECUXxV.

e We are asked if there is a perfect matching.

— A permutation 7 of {1,2,...,n} such that
(ui7vﬂ'(i)) er

for all u; € U.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 382

A Perfect Matching

U %)
u, * v,
Uy V3
u4 V4
u 1%
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Symbolic Determinants

e Given a bipartite graph G, construct the n X n matrix
A% whose (4, 7)th entry Ag is a variable z;; if
(u;,v5) € E and zero otherwise.

e The determinant of A€ is
det(A9) = sen(r) [ [ AT i)- (5)
s =1

— m ranges over all permutations of n elements.

— sgn(m) is 1 if m is the product of an even number of

transpositions and —1 otherwise.
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Determinant and Bipartite Perfect Matching
e In > sgn(m) ], Agﬂ(i), note the following:

— Each summand corresponds to a possible prefect
matching .

— As all variables appear only once, all of these
summands are different monomials and will not

cancel.
e [t is essentially an exhaustive enumeration.

Proposition 56 (Edmonds (1967)) G has a perfect
matching if and only if det(A) is not identically zero.
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A Perfect Matching in a Bipartite Graph

U Vi
u, * * v,
L V3
L Vs
7 Vs
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The Perfect Matching in the Determinant

e The matrix is

0 0 T13 T14 0
0 0 0 0
A= 25 0 0 0 [z
Za1 0 T43|  Taa 0
RES! 0 0 0 Ts5 |
o det(AY) = —@14T2T35T43T51 + T13T22T35T4aT51 +

T14T22L31T43L55 — L13XL22X31X44T55, each denoting a
perfect matching.
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How To Test If a Polynomial Is Identically Zero?

) Density Attack

e det(A%) is a polynomial in n? variables.

) ) e The density of roots in the domain is at most
e There are exponentially many terms in det(A%).

mdM™ 1 md
e Expanding the determinant polynomial is not feasible. M M

— Too many terms.
Y e So suppose p(x1,Ta, ..., Ty) Z 0.

e Observation: If det(A%) is identically zero, then it

remains zero if we substitute arbitrary integers for the

e Then a random
variables x11, ..., Tnn. (x1,29,...,2,) €{0,1,...,M —1}"

e What is the likelihood of obtaining a zero when det(A%) has a probability of < md/M of being a root of p.
is not identically zero?
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Number of Roots of a Polynomial

Lemma 57 (Schwartz (1980)) Let p(x1,22,...,2m) Z0 Density Attack (concluded)

be a polynomial in m wvariables each of degree at most d. Let Here is a sampling algorithm to test if p(x1, 2o, ..., Zm) # 0.

M € Z*. Then the number of m-tuples Choose i1, ...,y from {0,1,..., M — 1} randomly;

(‘,L_hx%“.’xm) c {0’17.“’M_1}m ifp(i1,i2,...,im) #Othen

return “p is not identically zero”;
such that p(x1,Za, ..., Tm) =0 is else
< mdM™ 1 return “p is identically zero”;

end if
e By induction on m (consult the textbook).
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A Randomized Bipartite Perfect Matching Algorithm?

We now return to the original problem of bipartite perfect

matching.
1: Choose n? integers i1, ..., in, from {0,1,...,b— 1}
randomly;
1: Calculate det(A%(i11,...,9n,)) by Gaussian elimination;
2: if det(A%(i11,...,9nn)) # 0 then
3:  return “G has a perfect matching”;
4: else
5:  return “G has no perfect matchings”;
6: end if

aLovész (1979).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 392
Analysis
e Pick b = 2n2.
e If G has no perfect matchings, the algorithm will always
be correct.
e Suppose G has a perfect matching.

— The algorithm will answer incorrectly with
probability at most n?d/b = 0.5 because d = 1.

— Run the algorithm independently k times and output
“G has no perfect matchings” if they all say no.

— The error probability is now reduced to at most 27%.

o Is there an (i11,...,in,) that will always give correct
answers for all bipartite graphs of 2n nodes??

2Thanks to a lively class discussion on November 24, 2004.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 393

Perfect Matching for General Graphs
e Page 382 is about bipartite perfect matching
e Now we are given a graph G = (V, E).
— V ={v1,v9,..., 02, }.
e We are asked if there is a perfect matching.
— A permutation 7 of {1,2,...,2n} such that
(vi,vr()) € E

for all v; € V.
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The Tutte Matrix®

e Given a graph G = (V, E), construct the 2n x 2n Tutte
matrix 7¢ such that

xij  if (vs,v5) € E and i < j,
Tg =4 - if (v;,v;) € Eandi > j,
0 othersie.
e The Tutte matrix is a skew-symmetric symbolic matrix.
e Similar to Proposition 56 (p. 385):

Proposition 58 G has a perfect matching if and only if
det(T%) is not identically zero.

aWilliam Thomas Tutte (1917-2002).
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Monte Carlo Algorithms?®
e The randomized bipartite perfect matching algorithm is
called a Monte Carlo algorithm in the sense that
— If the algorithm finds that a matching exists, it is
always correct (no false positives).
— If the algorithm answers in the negative, then it may
make an error (false negative).

e The algorithm makes a false negative with probability
< 0.5.

e This probability is not over the space of all graphs or
determinants, but over the algorithm’s own coin flips.

— It holds for any bipartite graph.
aMetropolis and Ulam (1949).

An Application of Markov's Inequality

e Algorithm C runs in expected time T'(n) and always
gives the right answer.

e Consider an algorithm that runs C' for time kT'(n) and
rejects the input if C' does not stop within the time
bound.

e By Markov’s inequality, this new algorithm runs in time
kT (n) and gives the wrong answer with probability
<1/k.

e By running this algorithm m times, we reduce the error
probability to < k™.
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The Markov Inequality®

Lemma 59 Let x be a random variable taking nonnegative
integer values. Then for any k > 0,

prob[z > kE[z]] < 1/k.

e Let p; denote the probability that x = i.

E[z] = Zipi
= Z ip; + Z ip;
]

i<kE[z] i>kE[x
> kE[z] x prob[z > kE[z]].

aAndrei Andreyevich Markov (1856-1922).

An Application of Markov's Inequality (concluded)

e Suppose, instead, we run the algorithm for the same
running time mkT (n) once and rejects the input if it
does not stop within the time bound.

e By Markov’s inequality, this new algorithm gives the
wrong answer with probability < 1/(mk).

e This is a far cry from the previous algorithm’s error

probability of < k™.

e The loss comes from the fact that Markov’s inequality
does not take advantage of any specific feature of the

random variable.
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3SAT vs. 2SAT Again

e Note that if ¢ is unsatisfiable, the algorithm will not
FSAT for k-SAT Formulas (p. 373) refute it.

o Let ¢(21, 0, ..., ) be a k-SAT formula. e The random walk algorithm needs expected exponential

time for 3SAT.

If ¢ is satisfiable, then return a satisfying truth ) ) )
— In fact, it runs in expected O((1.333 -« 4 €)™) time

assignment. )
with 7 = 3n, much better than O(2").*

Otherwise, return “no.” ) ) ) )
e We will show immediately that it works well for 2SAT.

We next propose a randomized algorithm for this ) )
e The state of the art is expected O(1.324™) time for 3SAT

problem. i b
and expected O(1.474™) time for 4SAT.
aSchoning (1999).
PKwama and Tamaki (2004).
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A Random Walk Algorithm for ¢ in CNF Form
1: Start with an arbitrary truth assignment T’
2: fori=1,2,...,rdo
3:  if T = ¢ then

4 return “¢ is satisfiable with 77;

5:  else

6 Let ¢ be an unsatisfiable clause in ¢ under T'; {All
of its literals are false under 7.}

7 Pick any x of these literals at random;

8: Modify T to make x true;

9:  end if

10: end for

11: return “¢ is unsatisfiable”;
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