coNP (continued)
e Suppose L is a coNP problem.

e There exists a polynomial-time nondeterministic
algorithm M such that:

coNP and Function Problems — If z € L, then M(z) = “yes” for all computation
paths.
— If 2 ¢ L, then M(z) = “no” for some computation
path.
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coNP
e By definition, coNP is the class of problems whose xOL xOL
complement is in NP.
e NP is the class of problems that have succinct
certificates (recall Proposition 31 on p. 254). O d O O
e coNP is therefore the class of problems that have yes O yes no yes
succinct disqualifications: yes yes
— A “no” instance of a problem in coNP possesses a yes yes no yes
short proof of its being a “no” instance.
— Only “no” instances have such proofs.
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coNP (concluded)
e Clearly P C coNP.

e It is not known if
P = NP N coNP.
— Contrast this with
R =RENcoRE

(see Proposition 11 on p. 126).

An Alternative Characterization of coNP

Proposition 43 Let L C ¥* be a language. Then L € coNP
if and only if there is a polynomially decidable and
polynomially balanced relation R such that

L={z:Vy(z,y) € R}.
(As on p. 253, we assume |y| < |z |* for some k.)
o L={z:(z,y) € ~R for some y}.

e Because —R remains polynomially balanced, L € NP by
Proposition 31 (p. 254).

e Hence L € coNP by definition.
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Some coNP Problems

e VALIDITY € coNP.

a truth assignment that does not satisfy it.

e SAT COMPLEMENT € coNP.
— The disqualification is a truth assignment that
satisfies it.
e HAMILTONIAN PATH COMPLEMENT € coNP.

— The disqualification is a Hamiltonian path.

— If ¢ is not valid, it can be disqualified very succinctly:

coNP Completeness

Proposition 44 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the < part is symmetric)
e Let L/ be any coNP language.
e Hence L' € NP.
e Let R be the reduction from L’ to L.
e Soz € L' if and only if R(z) € L.

e So z € I/ if and only if R(x) € L.

R is a reduction from L’ to L.
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coNP Hardness and NP Hardness®

Proposition 45 If a coNP-hard problem is in NP, then
Some coNP-Complete Problems NP — coNP.

e SAT COMPLEMENT is coNP-complete. e Let I € NP be coNP-hard.

— SAT COMPLEMENT is the complement of SAT. o Lot NTM M decide L.

® VALIDITY is coNP-complete. e For any L' € coNP, there is a reduction R from L’ to L.

— ¢ is valid if and only if —¢ is not satisfiable.

L’ € NP as it is decided by NTM M (R(x)).

— The reduction from SAT COMPLEMENT t0 VALIDITY ) )
— Alternatively, NP is closed under complement.

is hence easy.

. e Hence coNP C NP.
e HAMILTONIAN PATH COMPLEMENT is coNP-complete.

e The other direction NP C coNP is symmetric.

aBrassard (1979); Selman (1978).
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Possible Relations between P. NP. coNP coNP Hardness and NP Hardness (concluded)

1. P = NP = coNP. Similarly,

Proposition 46 If an NP-hard problem is in coNP, then

2. NP = coNP but P # NP.
NP = coNP.

3. NP # coNP and P # NP.

Hence NP-complete problems are unlikely to be in coNP and
e This is current “consensus.”

coNP-complete problems are unlikely to be in NP.
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The Primality Problem
DP

e DP = NP N coNP is the class of problems that have
succinct certificates and succinct disqualifications.

e An integer p is prime if p > 1 and all positive numbers
other than 1 and p itself cannot divide it.

e PRIMES asks if an integer IV is a prime number. . . .
& P — Each “yes” instance has a succinct certificate.

e Dividing N by 2,3,...,V/N is not efficient.
— The length of N is only log N, but v/ N = 20-5log N

— Each “no” instance has a succinct disqualification.
— No instances have both.

e A polynomial-time algorithm for PRIMES was not found e P CDP.

until 2002 by Agrawal, Kayal, and Saxena!
o We will see that PRIMES € DP.
e We will focus on efficient “probabilistic” algorithms for . .

) i — In fact, PRIMES € P as mentioned earlier.
PRIMES (used in Mathematica, e.g.).
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1: if n = a® for some a,b > 1 then
2:  return “composite”;
3: end if Primitive Roots in Finite Fields
4: forr=2,3,...,n—1do
5 if ged(n,r) > 1 then Theorem 47 (Lucas and Lehmer (1927)) * A number
6: return “composite”;
7:  end if p > 1 is prime if and only if there is a number 1 <r <p
8 if ris a prime then (called the primitive root or generator) such that
9: Let g be the largest prime factor of r — 1;
10: if ¢ > 4y/rlogn and n{"~1Y/9 £ 1 mod r then p—1 _
11: break; {Exit the for-loop.} 1.r = 1l mod p; and
12: end if 1 . ..
13- end if 2. r®=1/9 £ 1 mod p for all prime divisors q of p — 1.
14: end for{r — 1 has a prime factor ¢ > 4./7logn.} .
15: for a = 1,2, ...,2/rlogn do e We will prove the theorem later.
16:  if (x —a)" # (2" —a) mod (2" — 1) in Z,[z] then - .
) . o aFrangois Edouard Anatole Lucas (1842-1891); Derrick Henry
17: return “composite”;
18:  end if Lehmer (1905-1991).
19: end for

20: return “prime”; {The only place with “prime” output.}
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Pratt's Theorem ) -
The Succinctness of the Certificate

Theorem 48 (Pratt (1975)) PRIMES € NP N coNP. _ ,
Lemma 49 The length of C(p) is at most quadratic at

e PRIMES is in coNP because a succinct disqualification is 51og3 p.

a divisor.
e This claim holds when p = 2 or p = 3.
e Suppose p is a prime. i .
e In general, p — 1 has k < log, p prime divisors

e p’s certificate includes the r in Theorem 47 (p. 346). =20,

e Use recursive doubling to check if 7?~! =1 mod p in e C(p) requires: 2 parentheses and 2k < 2log, p separators
time polynomial in the length of the input, log, p. (length at most 2log, p long), r (length at most log, p),

e We also need all prime divisors of p — 1: g1, qa, - . -, . g1 = 2 and its certificate 1 (length at most 5 bits), the

q;’s (length at most 2log, p), and the C(qg;)s.
e Checking r(P=1/% = 1 mod p is also easy. ( 2P) (@)
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The Proof (concluded)

The Proof (concluded) e C(p) is succinct because
k
e Checking q1, g2, - .., qx are all the divisors of p — 1 is easy. IC(p)] < S5logyp+5+ 52 logg g
o We still need certificates for the primality of the g;’s. =2 )
k
e The complete certificate is recursive and tree-like: < 5logyp+5+5 (Z log, Qi)
i=2
Cp) = (r;91,C(q1), g2, C(q2), - - -, ak, Clai))- o p—1
< 510g2p+5+5log27

o C can also be checked in polynomial time.
) POy < 5logyp+5+5(logyp — 1)

e We next prove that C'(p) is succinct. 51082 p+ 10 — 5log, p < 5log2 p
2 2P = 2

for p > 4.
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eulerphi.nb

Basic Modular Arithmetics®
o Let m,ncZv.
e m|n means m divides n and m is n’s divisor.

e We call the numbers 0,1,...,n — 1 the residue modulo

n.

e The greatest common divisor of m and n is denoted

ged(m, n).
e The r in Theorem 47 (p. 346) is a primitive root of p.

e We now prove the existence of primitive roots and then
Theorem 47.

2Carl Friedrich Gauss.
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Euler's® Totient or Phi Function

o Let
®(n)={m:1<m<n,ged(m,n) =1}

be the set of all positive integers less than n that are
prime to n (Z* is a more popular notation).

— ®(12) = {1,5,7,11}.
e Define Euler’s function of n to be ¢(n) = |®(n)|.
e ¢(p) =p—1 for prime p, and ¢(1) =1 by convention.

e Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).

Two Properties of Euler's Function

The inclusion-exclusion principle* can be used to prove the

following.
Lemma 50 ¢(n) =n][],,(1- %)

o If n=p{'p5? - pi* is the prime factorization of n, then

é(n) —nlfll <1_;%>'

Corollary 51 ¢(mn) = ¢(m) ¢(n) if ged(m,n) = 1.

aSee my Discrete Mathematics lecture notes.
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A Key Lemma
Lemma 52 ) ¢(m)=n.

o Let Hle p]f be the prime factorization of n and consider

¢
[T16) +6pi) + -+ 6(pf)]. (4)
i=1
e Equation (4) equals n because ¢(p¥) = p¥ — pt~! by
Lemma 50.

. L K}
e Expand Eq. (4) to yield Zkz’lgkl,... Ky <k [Li—; o(p;")-
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The Proof (concluded)
e By Corollary 51 (p. 354),
¢ y ¢
H(;S(pi’i) =0 <Hpii> :
i=1 =1

e Each Hle p;" is a unique divisor of n = Hle pfl.

e Equation (4) becomes

> o(m).

mln
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The Density Attack for PRIMES

All numbers < n

Witnesses to
compositeness
of n

e It works, but does it work well?
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Factorization and Euler’'s Function

e The ratio of numbers < n relatively prime to n is

p(n)/n.
e When n = pq, where p and ¢ are distinct primes,
e 1 1 1
¢(n) _pg—p—gq+l _, 1 1
n pq qa p

— The “density attack” to factor n = pq hence takes
Q(y/n) steps on average when p ~ ¢ = O(y/n).

— This running time is exponential: 2(20-510827),
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The Chinese Remainder Theorem

e Let n = nyng - --ng, where n; are pairwise relatively

prime.
e For any integers aq,as,...,ay, the set of simultaneous
equations
r = aj; modnq,
T = as mod no,
r = ag mod ng,

has a unique solution modulo n for the unknown z.
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Fermat's “Little” Theorem?
Lemma 53 For all 0 < a < p, a?~! =1 mod p.
e Consider a®(p) = {am mod p: m € ®(p)}.
e a®(p) = ®(p).

— Suppose am = am’ mod p for m > m’, where
m,m’ € ®(p).

— That means a(m —m') = 0 mod p, and p divides a or
m — m’, which is impossible.

e Hence (p—1)! =a?~1(p—1)! mod p.

e Finally, a?~! = 1 mod p because p [(p — 1)!.

aPierre de Fermat (1601-1665).
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The Fermat-Euler Theorem
Corollary 54 For all a € ®(n), a®™ =1 mod n.
o As 12 =22 x3,

¢(12):12x<1—%> (1—%):4

e In fact, ®(12) = {1,5,7,11}.

e For example,
5% = 625 = 1 mod 12.
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Exponents

e The exponent of m € ®(p) is the least k € ZT such that
mF =1 mod p.

e Every residue s € ®(p) has an exponent.

3

— 1,s,52, 5%, ... eventually repeats itself, say

s* = s/ mod p, which means s/~% = 1 mod p.
e If the exponent of m is k and m* = 1 mod p, then k|/.

— Otherwise, £ = gk + a for 0 < a < k, and

mf = m?*? = m? =1 mod p, a contradiction.

Lemma 55 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.
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Exponents and Primitive Roots
e From Fermat’s “little” theorem, all exponents divide
p—1.
e A primitive root of p is thus a number with exponent
p—1.

e Let R(k) denote the total number of residues in ®(p)
that have exponent k.

e We already knew that R(k) =0 for k& f(p —1).

® S0 >y p—1) (k) =p —1 as every number has an

exponent.
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Size of R(k)
e Any a € ®(p) of exponent k satisfies z¥ = 1 mod p.

e Hence there are at most k residues of exponent k, i.e.
R(k) < k, by Lemma 55 on p. 362.

e Let s be a residue of exponent k.

k—1

o 1,5,5% ...,s are all distinct modulo p.

— Otherwise, s' = s/ mod p with i < j and s is of

exponent j — ¢ < k, a contradiction.

e As all these k distinct numbers satisfy ¥ = 1 mod p,
they are all the solutions of ¥ = 1 mod p.

e But do all of them have exponent k (i.e., R(k) = k)?

)
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Size of R(k) (continued)
e And if not (i.e., R(k) < k), how many of them do?
e Suppose ¢ < k and ¢ ¢ ®(k) with ged(l, k) =d > 1.

e Then
(s9)%/4 =1 mod p.

e Therefore, s* has exponent at most k/d, which is less
than k.

e We conclude that
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Size of R(k) (concluded)

e Because all p — 1 residues have an exponent,
p—1= > RME)< Y ék)=p-1
k|(p—1) kl(p—1)
by Lemma 51 on p. 354.

e Hence

Ry — | 90 when kl(p—1)

0 otherwise

one primitive root.

e This proves one direction of Theorem 47 (p. 346).

e In particular, R(p — 1) = ¢(p — 1) > 0, and p has at least
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