
max bisection

• max cut becomes max bisection if we require that

|S| = |V − S|.

• It has many applications, especially in VLSI layout.
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max bisection Is NP-Complete

• We shall reduce the more general max cut to max

bisection.

• Add |V | isolated nodes to G to yield G′.

• G′ has 2 × |V | nodes.

• As the new nodes have no edges, moving them around

contributes nothing to the cut.
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The Proof (concluded)

• Every cut (S, V − S) of G = (V, E) can be made into a

bisection by appropriately allocating the new nodes

between S and V − S.

• Hence each cut of G can be made a cut of G′ of the

same size, and vice versa.
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bisection width

• bisection width is like max bisection except that it

asks if there is a bisection of size at most K (sort of min

bisection).

• Unlike min cut, bisection width remains

NP-complete.

– A graph G = (V, E), where |V | = 2n, has a bisection

of size K if and only if the complement of G has a

bisection of size n2 − K.

– So G has a bisection of size ≥ K if and only if its

complement has a bisection of size ≤ n2 − K.
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Illustration
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hamiltonian path Is NP-Completea

Theorem 38 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).
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tsp (d) Is NP-Complete

Corollary 39 tsp (d) is NP-complete.

• Consider a graph G with n nodes.

• Define dij = 1 if [ i, j ] ∈ G and dij = 2 if [ i, j ] 6∈ G.

• Set the budget B = n + 1.

• If G has no Hamiltonian paths, then every tour on the

new graph must contain at least two edges with weight 2.

• The total cost is then at least (n − 2) + 2 · 2 = n + 2.

• There is a tour of length B or less if and only if G has a

Hamiltonian path.
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Hamiltonian Path and tsp Tour
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Graph Coloring

• k-coloring asks if the nodes of a graph can be colored

with ≤ k colors such that no two adjacent nodes have

the same color.

• 2-coloring is in P (why?).

• But 3-coloring is NP-complete (see next page).

• k-coloring is NP-complete for k ≥ 3 (why?).
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3-coloring Is NP-Completea

• We will reduce naesat to 3-coloring.

• We are given a set of clauses C1, C2, . . . , Cm each with 3

literals.

• The boolean variables are x1, x2, . . . , xn.

• We shall construct a graph G such that it can be colored

with colors {0, 1, 2} if and only if all the clauses can be

nae-satisfied.

aKarp (1972).
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The Proof (continued)

• Every variable xi is involved in a triangle [ a, xi,¬xi ]

with a common node a.

• Each clause Ci = (ci1 ∨ ci2 ∨ ci3) is also represented by a

triangle

[ ci1, ci2, ci3 ].

– Node cij with the same label as one in some triangle

[ a, xk,¬xk ] represent distinct nodes.

• There is an edge between cij and the node that

represents the jth literal of Ci.
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Construction for · · · ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ · · ·
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The Proof (continued)

Suppose the graph is 3-colorable.

• Assume without loss of generality that node a takes the

color 2.

• A triangle must use up all 3 colors.

• As a result, one of xi and ¬xi must take the color 0 and

the other 1.
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The Proof (continued)

• Treat 1 as true and 0 as false.a

– We were dealing only with those triangles with the a

node, not the clause triangles.

• The resulting truth assignment is clearly contradiction

free.

• As each clause triangle contains one color 1 and one

color 0, the clauses are nae-satisfied.

aThe opposite also works.
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The Proof (continued)

Suppose the clauses are nae-satisfiable.

• Color node a with color 2.

• Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).

– We were dealing only with those triangles with the a

node, not the clause triangles.
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The Proof (concluded)

• For each clause triangle:

– Pick any two literals with opposite truth values.

– Color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

– Color the remaining node with color 2.

• The coloring is legitimate.

– If literal w of a clause triangle has color 2, then its

color will never be an issue.

– If literal w of a clause triangle has color 1, then it

must be connected up to literal w with color 0.

– If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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tripartite matching

• We are given three sets B, G, and H, each containing n

elements.

• Let T ⊆ B × G × H be a ternary relation.

• tripartite matching asks if there is a set of n triples

in T , none of which has a component in common.

– Each element in B is matched to a different element

in G and different element in H.

Theorem 40 (Karp (1972)) tripartite matching is

NP-complete.
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Related Problems

• We are given a family F = {S1, S2, . . . , Sn} of subsets of

a finite set U and a budget B.

• set covering asks if there exists a set of B sets in F

whose union is U .

• set packing asks if there are B disjoint sets in F .

• Assume |U | = 3m for some m ∈ N and |Si| = 3 for all i.

• exact cover by 3-sets asks if there are m sets in F

that are disjoint and have U as their union.
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SET COVERING
 SET PACKING
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Related Problems (concluded)

Corollary 41 set covering, set packing, and exact

cover by 3-sets are all NP-complete.
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The knapsack Problem

• There is a set of n items.

• Item i has value vi ∈ Z
+ and weight wi ∈ Z

+.

• We are given K ∈ Z
+ and W ∈ Z

+.

• knapsack asks if there exists a subset S ⊆ {1, 2, . . . , n}

such that
∑

i∈S wi ≤ W and
∑

i∈S vi ≥ K.

– We want to achieve the maximum satisfaction within

the budget.
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knapsack Is NP-Complete

• knapsack ∈ NP: Guess an S and verify the constraints.

• We assume vi = wi for all i and K = W .

• knapsack now asks if a subset of {w1, w2, . . . , wn} adds

up to exactly K.

– Picture yourself as a radio DJ.

– Or a person trying to control the calories intake.

• We shall reduce exact cover by 3-sets to knapsack.
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The Proof (continued)

• We are given a family F = {S1, S2, . . . , Sn} of size-3

subsets of U = {1, 2, . . . , 3m}.

• exact cover by 3-sets asks if there are m disjoint

sets in F that cover the set U .

• Think of a set as a bit vector in {0, 1}3m.

– 001100010 means the set {3, 4, 8}, and 110010000

means the set {1, 2, 5}.

• Our goal is

3m
︷ ︸︸ ︷

11 · · · 1.
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The Proof (continued)

• A bit vector can also be considered as a binary number.

• Set union resembles addition.

– 001100010 + 110010000 = 111110010, which denotes

the set {1, 2, 3, 4, 5, 8}, as desired.

• Trouble occurs when there is carry.

– 001100010 + 001110000 = 010010010, which denotes

the set {2, 5, 8}, not the desired {3, 4, 5, 8}.
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The Proof (continued)

• Carry may also lead to a situation where we obtain our

solution 11 · · · 1 with more than m sets in F .

– 001100010+ 001110000+ 101100000+ 000001101 =

111111111.

– But this “solution” {1, 3, 4, 5, 6, 7, 8, 9} does not

correspond to an exact cover.

– And it uses 4 sets instead of the required 3.a

• To fix this problem, we enlarge the base just enough so

that there are no carries.

• Because there are n vectors in total, we change the base

from 2 to n + 1.
aThanks to a lively class discussion on November 20, 2002.
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The Proof (continued)

• Set vi to be the (n + 1)-ary number corresponding to the

bit vector encoding Si.

• Now in base n + 1, if there is a set S such that

∑

vi∈S vi =

3m
︷ ︸︸ ︷

11 · · · 1, then every bit position must be

contributed by exactly one vi and |S| = m.

• Finally, set

K =
3m−1∑

j=0

(n + 1)j =

3m
︷ ︸︸ ︷

11 · · · 1 (base n + 1).
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The Proof (continued)

• Suppose F admits an exact cover, say {S1, S2, . . . , Sm}.

• Then picking S = {v1, v2, . . . , vm} clearly results in

v1 + v2 + · · · + vm =

3m
︷ ︸︸ ︷

11 · · · 1 .

– It is important to note that the meaning of addition

(+) is independent of the base.a

– It is just regular addition.

aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3,

2004.
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The Proof (concluded)

• On the other hand, suppose there exists an S such that

∑

vi∈S vi =

3m
︷ ︸︸ ︷

11 · · · 1 in base n + 1.

• The no-carry property implies that |S| = m and

{Si : vi ∈ S} is an exact cover.
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bin packings

• We are given N positive integers a1, a2, . . . , aN , an

integer C (the capacity), and an integer B (the number

of bins).

• bin packing asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.

• Think of packing bags at the check-out counter.

Theorem 42 bin packing is NP-complete.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 326

integer programming

• integer programming asks whether a system of linear

inequalities with integer coefficients has an integer

solution.

– linear programming asks whether a system of

linear inequalities with integer coefficients has a

rational solution.
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integer programming Is NP-Completea

• set covering can be expressed by the inequalities

Ax ≥ ~1,
∑n

i=1
xi ≤ B, 0 ≤ xi ≤ 1, where

– xi is one if and only if Si is in the cover.

– A is the matrix whose columns are the bit vectors of

the sets S1, S2, . . ..

– ~1 is the vector of 1s.

• This shows integer programming is NP-hard.

• Many NP-complete problems can be expressed as an

integer programming problem.

aPapadimitriou (1981).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 328

Easier or Harder?a

• Adding restrictions on the allowable problem instances

will not make a problem harder.

– We are now solving a subset of problem instances.

– The independent set proof (p. 278). and the

knapsack proof (p. 319).

– sat to 2sat (easier by p. 265).

– circuit value to monotone circuit value

(equally hard by p. 244).

aThanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

• Adding restrictions on the allowable solutions may make

a problem easier, as hard, or harder.

• It is problem dependent.

– min cut to bisection width (harder by p. 301).

– linear programming to integer programming

(harder by p. 327).

– sat to naesat (equally hard by p. 273) and max

cut to max bisection (equally hard by p. 299).

– 3-coloring to 2-coloring (easier by p. 306).
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