
Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V, E), we shall construct a

variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.
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The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without

passing through a node bigger than k.

• hijk: There is a path from node i to node j passing

through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.
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The Construction

• hijk is an and gate with predecessors gi,k,k−1 and

gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,

where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates: It is a monotone

circuit.
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Reduction of circuit sat to sat

• Given a circuit C, we shall construct a boolean

expression R(C) such that R(C) is satisfiable if and only

if C is satisfiable.

– R(C) will turn out to be a CNF.

• The variables of R(C) are those of C plus g for each

gate g of C.

• Each gate of C will be turned into equivalent clauses of

R(C).

• Recall that clauses are ∧-ed together.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 213



The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).

• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).

• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses

(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.
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The Clauses of R(C) (concluded)

g is a ∨ gate with predecessor gates h and h′: Add

clauses (¬h ∨ g), (¬h′ ∨ g), and (h ∨ h′ ∨ ¬g).

• Meaning: g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h), (¬g ∨ h′), and (¬h ∨ ¬h′ ∨ g).

• Meaning: g ⇔ (h ∧ h′).

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.
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Composition of Reductions

Proposition 24 If R12 is a reduction from L1 to L2 and

R23 is a reduction from L2 to L3, then the composition

R12 ◦ R23 is a reduction from L1 to L3.

• Clearly x ∈ L1 if and only if R23(R12(x)) ∈ L3.

• How to compute R12 ◦ R23 in space O(log n), as required

by the definition of reduction?
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The Proof (continued)

• An obvious way is to generate R12(x) first and then

feeding it to R23.

• This takes polynomial time.a

– It takes polynomial time to produce R12(x) of

polynomial length.

– It also takes polynomial time to produce

R23(R12(x)).

• Trouble is R12(x) may consume up to polynomial space,

much more than the logarithmic space required.

aHence our concern disappears had we required reductions to be in P

instead of L.
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The Proof (concluded)

• The trick is to let R23 drive the computation.

• It asks R12 to deliver each bit of R12(x) when needed.

• When R23 wants the ith bit, R12(x) will be simulated

until the ith bit is available.

– The initial i − 1 bits should not be committed to the

string.

• This is feasible as R12(x) is produced in a write-only

manner.

– The ith output bit of R12(x) is well-defined because

once it is written, it will never be overwritten.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 218

Completenessa

• As reducibility is transitive, problems can be ordered

with respect to their difficulty.

• Is there a maximal element?

• It is not altogether obvious that there should be a

maximal element.

• Many infinite structures (such as integers and reals) do

not have maximal elements.

• Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

aCook (1971).
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Completeness (concluded)

• Let C be a complexity class and L ∈ C.

• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have

complete problems!

• Complete problems capture the difficulty of a class

because they are the hardest.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 220

Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.

• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.
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Illustration of Completeness and Hardness
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Closedness under Reduction

• A class C is closed under reductions if whenever L is

reducible to L′ and L′ ∈ C, then L ∈ C.

• P, NP, coNP, L, NL, PSPACE, and EXP are all closed

under reductions.
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Complete Problems and Complexity Classes

Proposition 25 Let C′ and C be two complexity classes such

that C′ ⊆ C. Assume C′ is closed under reductions and L is a

complete problem for C. Then C = C′ if and only if L ∈ C′.

• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.

• Because C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• As C′ ⊆ C, we conclude that C = C′.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 224

The Proof (concluded)

• On the other hand, suppose C = C′.

• As L is C-complete, L ∈ C.

• Thus, trivially, L ∈ C′.
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Two Immediate Corollaries

Proposition 25 implies that

• P = NP if and only if an NP-complete problem in P.

• L = P if and only if a P-complete problem is in L.
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Complete Problems and Complexity Classes

Proposition 26 Let C′ and C be two complexity classes

closed under reductions. If L is complete for both C and C′,

then C = C′.

• All languages L ∈ C reduce to L ∈ C′.

• Since C′ is closed under reductions, L ∈ C′.

• Hence C ⊆ C′.

• The proof for C′ ⊆ C is symmetric.
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Table of Computation

• Let M = (K, Σ, δ, s) be a single-string polynomial-time

deterministic TM deciding L.

• Its computation on input x can be thought of as a

|x |k × |x |k table, where |x |k is the time bound (recall

that it is an upper bound).

– It is a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of

position j of the string after i steps of computation.
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Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

– The string length hence never exceeds |x |k.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔

s so that each row has length |x |k.

– The computation will never reach the right end of

the table for lack of time.

• If the cursor scans the jth position at time i when M is

at state q and the symbol is σ, then the (i, j)th entry is

a new symbol σq.
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Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of

σq.

• Modify M so that the cursor starts not at � but at the

first symbol of the input.

• The cursor never visits the leftmost � by telescoping

two moves of M each time the cursor is about to move

to the leftmost �.

• So the first symbol in every row is a � and not a �q.
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Some Conventions To Simplify the Table (concluded)

• If M has halted before its time bound of |x |k, so that

“yes” or “no” appears at a row before the last, then all

subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is

“yes” for some j.
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Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k

︷ ︸︸ ︷

�0s10001

⊔ ⊔

· · ·

⊔

• A typical row may be

| x |k

︷ ︸︸ ︷

�10100q01110100

⊔ ⊔

· · ·

⊔

• The last rows must look like

|x |k

︷ ︸︸ ︷

� · · · “yes” · · ·
⊔
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A P-Complete Problem

Theorem 27 (Ladner (1975)) circuit value is

P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such

that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.
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The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of

Tij is known.

– The jth symbol of x or
⊔

, a �, and a
⊔

, respectively.

– Three out of four of T ’s borders are known.
� � � � � � � �

�
�

�
�

� �

� �
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The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j, and Ti−1,j+1.

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on

the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, where

m = dlog2 |Γ |e

(state assignment in circuit design).
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The Proof (continued)

• Let binary string Sij1Sij2 · · ·Sijm encode Tij.

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries

Sij`, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ` ≤ m.
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The Proof (continued)

• Each bit Sij` depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j: Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• So there are m boolean functions F1, F2, . . . , Fm with

3m inputs each such that for all i, j > 0,

Sij` = F`(Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m).
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The Proof (continued)

• These Fi’s depend on only M ’s specification, not on x.

• Their sizes are fixed.

• These boolean functions can be turned into boolean

circuits.

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j, Ti−1,j+1) = Tij .

– C is like an ASIC (application-specific IC) chip.
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Circuit C

T

i -
 1
,j -
 1


T

ij


T

i - 
1
,j + 
1


T

i -
 1
,j


C
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The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme

columns.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output

“yes”/“no” (coded as 1/0) appear at position

(|x |k − 1, 1).
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The Computation Tableau and R(x)

� � � � � � � �

�
�

�
�

� � � � � �

� � � � � �

� � � � � �
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A Corollary

The construction in the above proof shows the following.

Corollary 28 If L ∈ TIME(T (n)), then a circuit with

O(T 2(n)) gates can decide if x ∈ L for |x | = n.
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monotone circuit value

• A monotone boolean circuit’s output cannot change from

true to false when one input changes from false to true.

• Monotone boolean circuits are hence less expressive than

general circuits as they can compute only monotone

boolean functions.

– Monotone circuits do not contain ¬ gates.

• monotone circuit value is circuit value applied

to monotone circuits.
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monotone circuit value Is P-Complete

Despite their limitations, monotone circuit value is as

hard as circuit value.

Corollary 29 monotone circuit value is P-complete.

• Given any general circuit, we can “move the ¬’s

downwards” using de Morgan’s laws. (Think!)
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Cook’s Theorem: the First NP-Complete Problem

Theorem 30 (Cook (1971)) sat is NP-complete.

• sat ∈ NP (p. 84).

• circuit sat reduces to sat (p. 213).

• Now we only need to show that all languages in NP can

be reduced to circuit sat.
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The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that

x ∈ L if and only if R(x) is satisfiable.

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c|x |k−1) ∈ {0, 1}|x |k .

• Once B is fixed, the computation is deterministic.
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The Proof (continued)

• Each choice of B results in a deterministic

polynomial-time computation, hence a table like the one

on p. 241.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:

C(Ti−1,j−1, Ti−1,j, Ti−1,j+1, c) = Tij .

C


c
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The Computation Tableau for NTMs and R(x)
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�
�
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� � � � � �
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 	 � 	 �
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The Proof (concluded)

• The overall circuit R(x) (on p. 248) is satisfiable if there

is a truth assignment B such that the computation table

accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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Parsimonious Reductions

• The reduction R in Cook’s theorem (p. 245) is such that

– Each satisfying truth assignment for circuit R(x)

corresponds to an accepting computation path for

M(x).

• The number of satisfying truth assignments for R(x)

equals that of M(x)’s accepting computation paths.

• This kind of reduction is called parsimonious.

• We will loosen the timing requirement for parsimonious

reduction: It runs in deterministic polynomial time.
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NP-Complete Problems
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Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)
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Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R}

is in P.

• R is said to be polynomially balanced if (x, y) ∈ R

implies |y| ≤ |x |k for some k ≥ 1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253



An Alternative Characterization of NP

Proposition 31 (Edmonds (1965)) Let L ⊆ Σ∗ be a

language. Then L ∈ NP if and only if there is a polynomially

decidable and polynomially balanced relation R such that

L = {x : ∃y (x, y) ∈ R}.

• Suppose such an R exists.

• L can be decided by this NTM:

– On input x, the NTM guesses a y of length ≤ |x |k

and tests if (x, y) ∈ R in polynomial time.

– It returns “yes” if the test is positive.
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The Proof (concluded)

• Now suppose L ∈ NP.

• NTM N decides L in time |x |k.

• Define R as follows: (x, y) ∈ R if and only if y is the

encoding of an accepting computation of N on input x.

• Clearly R is polynomially balanced because N is

polynomially bounded.

• R is polynomially decidable because it can be efficiently

verified by checking with N ’s transition function.

• Finally L = {x : (x, y) ∈ R for some y} because N

decides L.
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Comments

• Any “yes” instance x of an NP problem has at least one

succinct certificate or polynomial witness y.

• “No” instances have none.

• Certificates are short and easy to verify.

– An alleged satisfying truth assignment for sat; an

alleged Hamiltonian path for hamiltonian path.

• Certificates may be hard to generate (otherwise, NP

equals P), but verification must be easy.

• NP is the class of easy-to-verify (in P) problems.
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You Have an NP-Complete Problem (for Your Thesis)

• From Propositions 25 (p. 224) and Proposition 26

(p. 227), it is the least likely to be in P.

• Your options are:

– Approximations.

– Special cases.

– Average performance.

– Randomized algorithms.

– Exponential-time algorithms that work well in

practice.

– “Heuristics” (and pray).
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