Reduction of REACHABILITY to CIRCUIT VALUE The Construction

e Note that both problems are in P o hiji is an AND gate with predecessors g; ;. x_1 and
Gk, j.k—1, Where k =1,2,...,n.

e Given a graph G = (V, E), we shall construct a ) )
variable-free circuit R(G). ® g;;i is an OR gate with predecessors g; j x—1 and h; j 1,
where k =1,2,...,n.
e The output of R(G) is true if and only if there is a path

. is th tput gate.
from node 1 to node n in G. ® Jinn 18 Lhe Output gate

e Idea: the Floyd-Warshall algorithm. ° Ir.ltere.s;mngly, R(G) uses no — gates: It is a monotone
circuit.
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The Gates Reduction of CIRCUIT SAT to SAT

e Given a circuit C, we shall construct a boolean
expression R(C) such that R(C) is satisfiable if and only
if C' is satisfiable.

— R(C) will turn out to be a CNF.

The gates are
— gijr With 1 < 7,5 <nand 0 <k < n.
- h”k with 1 S i,j,]f S n.

gijk: There is a path from node i to node j without e The variables of R(C') are those of C plus g for each

passing through a node bigger than k. sate g of C.

hiji: There is a path from node i to node j passing e Each gate of C' will be turned into equivalent clauses of

through k& but not any node bigger than k. R(C).

Input gate gijo = true if and only if i = j or (i, 7) € E. e Recall that clauses are A-ed together.
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The Clauses of R(C)
g is a variable gate z: Add clauses (g V z) and (g V —z).
e Meaning: g & .
g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C') true.
g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a = gate with predecessor gate h: Add clauses
(mg V —h) and (g V h).

e Meaning: g & —h.
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The Clauses of R(C') (concluded)
g is a V gate with predecessor gates h and h': Add
clauses (-h V g), (=h' V g), and (b V A/ V —g).
e Meaning: g < (hV h').
g is a A gate with predecessor gates h and h': Add
clauses (mg V h), (mg VvV h'), and (—h V —-h' V g).
e Meaning: g < (h AR).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C') true.
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Composition of Reductions

Proposition 24 If Ri5 is a reduction from L1 to Lo and
Ros is a reduction from Lo to Ls, then the composition
R15 0 Rog is a reduction from Ly to L.

e Clearly x € L; if and only if Ra3(R12(x)) € Ls.

e How to compute Ris 0 Rog in space O(logn), as required
by the definition of reduction?
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The Proof (continued)

e An obvious way is to generate Rio(x) first and then
feeding it to Ras.
e This takes polynomial time.®

— It takes polynomial time to produce Ri3(z) of
polynomial length.

— It also takes polynomial time to produce
Ro3(Ria(x)).

e Trouble is Ri2(z) may consume up to polynomial space,
much more than the logarithmic space required.

@Hence our concern disappears had we required reductions to be in P
instead of L.
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The Proof (concluded)

e The trick is to let Rasg drive the computation.

e It asks Ryo to deliver each bit of Ri(x) when needed.

e When Ras3 wants the ith bit, Ri2(z) will be simulated
until the 7th bit is available.
— The initial 2 — 1 bits should not be committed to the

string.

e This is feasible as Ry2(x) is produced in a write-only

manner.

— The dth output bit of Rj2(z) is well-defined because

once it is written, it will never be overwritten.
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Completeness (concluded)
e Let C be a complexity class and L € C.

e L is C-complete if every L’ € C can be reduced to L.
— Most complexity classes we have seen so far have

complete problems!

e Complete problems capture the difficulty of a class
because they are the hardest.
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Completeness?®

e As reducibility is transitive, problems can be ordered
with respect to their difficulty.

o Is there a mazimal element?

e It is not altogether obvious that there should be a

maximal element.

e Many infinite structures (such as integers and reals) do

not have maximal elements.

e Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

2Cook (1971).
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Hardness

e Let C be a complexity class.

L is C-hard if every L' € C can be reduced to L.

It is not required that L € C.

e If L is C-hard, then by definition, every C-complete
problem can be reduced to L.?

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,
2003.
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Complete Problems and Complexity Classes

lllustration of Completeness and Hardness

Proposition 25 Let C' and C be two complexity classes such
that C' C C. Assume C' is closed under reductions and L is a
complete problem for C. Then C = C’ if and only if L € C’.

e Suppose L € C’ first.

e Every language A € C reduces to L € C’.

Because C’ is closed under reductions, A € C’.

Hence C C C'.

e As (' CC, we conclude that C =C'.
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Closedness under Reduction The Proof (concluded)

e A class C is closed under reductions if whenever L is
reducible to L' and L’ € C, then L € C.

e On the other hand, suppose C = C’.

e As L is C-complete, L € C.
e P, NP, coNP, L, NL, PSPACE, and EXP are all closed

under reductions. e Thus, trivially, L € C'.
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Two Immediate Corollaries
Proposition 25 implies that
e P = NP if and only if an NP-complete problem in P.

e L = P if and only if a P-complete problem is in L.
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Table of Computation

e Let M = (K,X%,4,s) be a single-string polynomial-time
deterministic TM deciding L.

e Its computation on input x can be thought of as a
|2 |* x |z |* table, where |z | is the time bound (recall
that it is an upper bound).

— It is a sequence of configurations.
e Rows correspond to time steps 0 to |z |* — 1.
e Columns are positions in the string of M.

e The (i,j)th table entry represents the contents of
position j of the string after i steps of computation.

Complete Problems and Complexity Classes

Proposition 26 Let C' and C be two complexity classes
closed under reductions. If L is complete for both C and C’,
then C =C'.

e All languages £ € C reduce to L € C'.
e Since C’ is closed under reductions, £ € C’.
e Hence C CC'.

e The proof for C' C C is symmetric.
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Some Conventions To Simplify the Table
e M halts after at most |« |¥ — 2 steps.
— The string length hence never exceeds |z |*.
e Assume a large enough k to make it true for |z | > 2.

e Pad the table with | |s so that each row has length |z |*.

— The computation will never reach the right end of
the table for lack of time.

e If the cursor scans the jth position at time ¢ when M is
at state ¢ and the symbol is o, then the (7, j)th entry is
a new symbol oy.
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Some Conventions To Simplify the Table (continued)

e If g is “yes” or “no,” simply use “yes” or “no” instead of
og.

e Modify M so that the cursor starts not at > but at the
first symbol of the input.

e The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost >.

e So the first symbol in every row is a > and not a >,.
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Some Conventions To Simplify the Table (concluded)

e If M has halted before its time bound of |z |¥, so that
“yes” or “no” appears at a row before the last, then all
subsequent rows will be identical to that row.

e M accepts z if and only if the (| = |* — 1, j)th entry is
“yes” for some j.

Comments

Each row is essentially a configuration.
If the input = 010001, then the first row is

k
[z |

>0,1000t | || |--+] ]

A typical row may be

k
[z

>10100401110100 | || || |

o |*

The last rows must look like > - - - “yes” - - I_I
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Theorem 27 (Ladner (1975)) CIRCUIT VALUE is
P-complete.

A P-Complete Problem

It is easy to see that CIRCUIT VALUE € P.

For any L € P, we will construct a reduction R from L
to CIRCUIT VALUE.

Given any input z, R(z) is a variable-free circuit such
that x € L if and only if R(z) evaluates to true.

Let M decide L in time nF.

Let T be the computation table of M on x.
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The Proof (continued)

e When i =0, 0or j =0, or j = |2|* — 1, then the value of
T

i is known.

— Three out of four of T’s borders are known.

>abcdefl

vVVvVvVvyVv
CCC =

— The jth symbol of z or | |, a >, and a ||, respectively.

The Proof (continued)
e Let binary string S;;1.5;2 - - - Sijm encode Tj;.
e We may treat them interchangeably without ambiguity.

e The computation table is now a table of binary entries
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Sije, where
: k
0<i<n"—1,
0<j<nfF-1
>J) > )
1</<m.
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The Proof (continued)

Consider other entries T;;.

Tij depends on Oﬂly E—l,j—la Ti—l,j; and E—l,j—i—l'

Tic1j-1 | Tic1yj | Tic1,541
112,.

Let T" denote the set of all symbols that can appear on
the table: ' =X U {0, :0 € ¥,q € K}.

e Encode each symbol of T' as an m-bit number, where
m = [log, [T'[]

(state assignment in circuit design).

The Proof (continued)

e Each bit S;;¢ depends on only 3m other bits:

Ti1-10 Sicij-11 Si—1j-12 - Sicij-1m

Ti-1, Si—1,j1 Si—1,5,2 o Sic1gm

Tic1j+10 Si—1j+11 Si—1j+12 0 Sic1j41,m
e So there are m boolean functions Fi, Fs, ..., F,, with

3m inputs each such that for all 7, j > 0,

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 235

Sije = Fi(Sic1,j-1,1,5-1,j-1.2, > Si—1j—1,m>
Si—1,5,1,5-1,4,25 - +» Si—1,5,m»
Si 141,15 Sim1,j41,2 - -+ Sie1,j+1,m)-
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The Proof (continued) The Proof (concluded)
e Proof (conclude

e These F;’s depend on only M’s specification, not on x.

e A copy of circuit C is placed at each entry of the table.
e Their sizes are fixed.
— Exceptions are the top row and the two extreme

e These boolean functions can be turned into boolean colummns.

circuits.
e R(z) consists of (|z |¥ —1)(]z |¥ — 2) copies of circuit C.
e Compose these m circuits in parallel to obtain circuit C Without 1 ; i L
with 3m-bit inputs and m-bit outputs. o Wit .Out oss of generality, assume the output
_ “yes” /“no” (coded as 1/0) appear at position
- Schematlcally, C(Ti—l,j—laTi—l,j; Ti—l,j—i—l) = TLJ (| x |k 1 1)
,1).

— C is like an ASIC (application-specific IC) chip.
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Circuit C The Computation Tableau and R(z)

T T T >abcdefl

i-1y-1 7i-1j "i-1j+1 TN

EEEEEEEEEEE
C > L

o K K

> L

ij ‘HHHHHHHHHHH\
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MONOTONE CIRCUIT VALUE Is P-Complete

A Corollary Despite their limitations, MONOTONE CIRCUIT VALUE is as

The construction in the above proof shows the following. hard as CIRCUIT VALUE.

Corollary 28 If L € TIME(T(n)), then a circuit with Corollary 29 MONOTONE CIRCUIT VALUE is P-complete.
O(T*(n)) gates can decide if v € L for |z| = n. e Given any general circuit, we can “move the —’s

downwards” using de Morgan’s laws. (Think!)
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MONOTONE CIRCUIT VALUE

e A monotone boolean circuit’s output cannot change from Cook’s Theorem: the First NP-Complete Problem

true to false wh input ch f false to true.
FHE B0 TAlse WHCH ONE MpHb CRanges Ot false 1o tie Theorem 30 (Cook (1971)) SAT is NP-complete.

e Monotone boolean circuits are hence less expressive than
DTSV e SAT € NP (p. 84).

general circuits as they can compute only monotone

boolean functions. e CIRCUIT SAT reduces to SAT (p. 213).

— Monotone circuits do not contain — gates. e Now we only need to show that all languages in NP can

e MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied be reduced to CIRCUIT SAT.

to monotone circuits.
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The Computation Tableau for NTMs and R(x)
The Proof (continued)

c, c,C
Let single-string NTM M decide L € NP in time n*. > a b C d C f |_] |l e

T Y s e 2 2 2 2 2

e Assume M has exactly two nondeterministic choices at
each step: choices 0 and 1. |—|
e For each input z, we construct circuit R(z) such that Ll MEEENEEEY N RN
x € L if and only if R(z) is satisfiable. W
e A sequence of nondeterministic choices is a bit string D |_|
k LIl v £2 £2 57 ;2
T
B= (01,02,...,C‘x|k_1) S {0,1}' ",
e Once B is fixed, the computation is deterministic. ‘ [TTTTTTTTITTTI T I ITITT T
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The Proof (continued)

e Each choice of B results in a deterministic
polynomial-time computation, hence a table like the one
on p. 241.

The Proof (concluded)

e The overall circuit R(x) (on p. 248) is satisfiable if there

is a truth assignment B such that the computation table

e Each circuit C' at time ¢ has an extra binary input ¢
corresponding to the nondeterministic choice:

C(Ti-1j-1,Ti-1,5,Ti—1,j+1,¢) = Tj;. .
accepts.

Ll ye e This happens if and only if M accepts z, i.e., x € L.
C
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Parsimonious Reductions

— Each satisfying truth assignment for circuit R(x)
corresponds to an accepting computation path for

e The number of satisfying truth assignments for R(x)
equals that of M (z)’s accepting computation paths.

e This kind of reduction is called parsimonious.

reduction: It runs in deterministic polynomial time.

e The reduction R in Cook’s theorem (p. 245) is such that

e We will loosen the timing requirement for parsimonious

Wir miissen wissen, wir werden wissen.
(We must know, we shall know.)
— David Hilbert (1900)
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Two Notions
e Let R C ¥* x X* be a binary relation on strings.

e R is called polynomially decidable if

{z;y: (x,y) € R}

isin P.

implies |y| < |z |*¥ for some k > 1.

e R is said to be polynomially balanced if (z,y) € R
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An Alternative Characterization of NP

Proposition 31 (Edmonds (1965)) Let L C ¥* be a
language. Then L € NP if and only if there is a polynomially
decidable and polynomially balanced relation R such that

L={z:3y(x,y) € R}.
e Suppose such an R exists.

e [ can be decided by this NTM:
— On input z, the NTM guesses a y of length < |z |
and tests if (z,y) € R in polynomial time.

— It returns “yes” if the test is positive.

Comments

e Any “yes” instance x of an NP problem has at least one
succinct certificate or polynomial witness y.

e “No” instances have none.

e Certificates are short and easy to verify.

— An alleged satisfying truth assignment for SAT; an
alleged Hamiltonian path for HAMILTONIAN PATH.

e Certificates may be hard to generate (otherwise, NP
equals P), but verification must be easy.

e NP is the class of easy-to-verify (in P) problems.
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The Proof (concluded)
e Now suppose L € NP.
e NTM N decides L in time |z |*.

e Define R as follows: (z,y) € R if and only if y is the
encoding of an accepting computation of N on input x.

e Clearly R is polynomially balanced because N is
polynomially bounded.

e R is polynomially decidable because it can be efficiently
verified by checking with N’s transition function.

e Finally L = {z: (z,y) € R for some y} because N
decides L.
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You Have an NP-Complete Problem (for Your Thesis)

e From Propositions 25 (p. 224) and Proposition 26
(p. 227), it is the least likely to be in P.
e Your options are:
— Approximations.
— Special cases.
— Average performance.
— Randomized algorithms.

— Exponential-time algorithms that work well in

practice.

— “Heuristics” (and pray).
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