
The Reachability Method

• The computation of a time-bounded TM can be

represented by directional transitions between

configurations.

• The reachability method constructs a directed graph

with all the TM configurations as its nodes and edges

connecting two nodes if one yields the other.

• The start node representing the initial configuration has

zero in degree.

• When the TM is nondeterministic, a node may have an

out degree greater than one.
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Illustration of the Reachability Method

yes


yes


Initial


configuration


The reachability method may give the edges on the fly

without explicitly storing the whole configuration graph.
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Relations between Complexity Classes

Theorem 21 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klog n+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Use the depth-first search as f is proper.
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Proof of Theorem 21(2)

• (continued)

– Specifically, generate a f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.

– Simulate the NTM based on the choices.

– Recycle the space and then repeat the above steps

until a “yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) as space is recycled.
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Proof of Theorem 21(3)

• Let k-string NTM

M = (K, Σ, ∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).
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Proof of Theorem 21(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K| × (n + 1) × |Σ|(2k−4)f(n) = O(c
log n+f(n)
1 ) (2)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.
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Proof of Theorem 21(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .) [there may be many of them].

• The problem is therefore that of reachability on a

graph with O(c
log n+f(n)
1 ) nodes.

• It is in TIME(clog n+f(n)) for some c because

reachability is in TIME(nk) for some k and

[

c
log n+f(n)
1

]k

= (ck
1)log n+f(n).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 184

The Grand Chain of Inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• It is known that PSPACE ( EXP.

• By Corollary 20 (p. 177), we know L ( PSPACE.

• The chain must break somewhere between L and

PSPACE.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.a

aCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”
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Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 92),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof that the exponential gap is inherent,

however.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic, a

polynomial, by Savitch’s theorem.
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Savitch’s Theorem

Theorem 22 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, dlog ne) holds.
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The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i − 1) and PATH(z, y, i − 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, dlog ne) with a depth-first search

on a graph with nodes (x, y, i)s (see next page).

• Like stacks in recursive calls, we keep only the current

path of (x, y, i)s.

• The space requirement is proportional to the depth of

the tree, dlog ne.
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• Depth is dlog ne, and each node (x, y, i) needs space

O(log n).

• The total space is O(log2 n).
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The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ G then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i − 1) and PATH(z, y, i − 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 23 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s theorem to the configuration graph of

the NTM on the input.

• From p. 183, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we supply the whole graph before applying

Savitch’s theorem, we get O(cf(n)) space!
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The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We check for connectedness only when i = 0, by

examining the input string.

• There, given configurations x and y, we go over the

Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.
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The Proof (concluded)

• The z variable in the algorithm simply runs through all

possible valid configurations.

• Each z has length O(f(n)) by Eq. (2) on p. 183.

• An alternative is to let z = 0, 1, . . . , O(cf(n)) and makes

sure it is a valid configuration before using it in the

recursive calls.a

aThanks to a lively class discussion on October 13, 2004.
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Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• It may be very powerful with respect to time as it is not

known if P = NP.
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Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes (p. 170).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.

aSzelepscényi (1987) and Immerman (1988).
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Reductions and Completeness
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Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for

every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to

R(x) for A.

– There must be restrictions on the complexity of

computing R.

– Otherwise, R(x) might as well solve B.
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Degrees of Difficulty (concluded)

• Problem A is at least as hard as problem B if B reduces

to A.

• This makes intuitive sense: If A is able to solve your

problem B, then A must be at least as powerful.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198

Reduction

x
 yes/no
R
(
x
)

R


algorithm


for A


Solving problem B by calling the algorithm for problem once

and without further processing its answer.
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Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.

• So some instances of A may never appear in the

reduction.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
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Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

• Note that by Theorem 21 (p. 180), R runs in polynomial

time.

• If R is a reduction from L1 to L2, then R(x) ∈ L2 is a

legitimate algorithm for x ∈ L1.
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A Paradox?

• Degree of difficulty is not defined in terms of absolute

complexity.

• So a language B ∈ TIME(n99) may be “easier” than a

language A ∈ TIME(n3).

• This happens when B is reducible to A.

• But isn’t this a contradiction when B 6∈ TIME(nk) for

any k < 99?

• That is, how can a problem requiring n33 time be

reducible to a problem solvable in n3 time?
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A Paradox? (concluded)

• The so-called contradiction is more apparent than real.

• When we solve the problem “x ∈ B?” with “R(x) ∈ A?”,

we must consider the time spent by R(x) and its length

|R(x) |.

• If |R(x) | = Ω(n33), then the time of answering

“R(x) ∈ A?” becomes Ω((n33)3) = Ω(n99).

• Suppose, on the other hand, that |R(x) | = o(n33).

• Then R(x) must run in time Ω(n99).

• In either case, there is no contradiction.
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hamiltonian path

• A Hamiltonian path of a graph is a path that visits

every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation

π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i + 1)) ∈ G for i = 1, 2, . . . , n − 1.

• hamiltonian path asks if a graph has a Hamiltonian

path.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 204

Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such

that R(G) is satisfiable if and only if G has a

Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is

occupied by node j.
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1


2

3


4


5

6


7
8

9


x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1.
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The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj for all i, j, k with i 6= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik for all i, j, k with j 6= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) 6∈ G and k = 1, 2, . . . , n − 1.
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The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From Clauses of 1 and 2, for each node j there is a

unique position i such that T |= xij .

• From Clauses of 3 and 4, for each position i there is a

unique node j such that T |= xij .

• So there is a permutation π of the nodes such that

π(i) = j if and only if T |= xij .
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The Proof (concluded)

• Clauses of 5 furthermore guarantees that

(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).
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