
The Reachability Method

• The computation of a time-bounded TM can be

represented by directional transitions between

configurations.

• The reachability method constructs a directed graph

with all the TM configurations as its nodes and edges

connecting two nodes if one yields the other.

• The start node representing the initial configuration has

zero in degree.

• When the TM is nondeterministic, a node may have an

out degree greater than one.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 178

Illustration of the Reachability Method

yes

yes

Initial

configuration

The reachability method may give the edges on the fly

without explicitly storing the whole configuration graph.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 179

Relations between Complexity Classes

Theorem 21 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klog n+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Use the depth-first search as f is proper.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 180

Proof of Theorem 21(2)

• (continued)

– Specifically, generate a f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.

– Simulate the NTM based on the choices.

– Recycle the space and then repeat the above steps

until a “yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) as space is recycled.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 181

Proof of Theorem 21(3)

• Let k-string NTM

M = (K, Σ, ∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182

Proof of Theorem 21(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K| × (n + 1) × |Σ|(2k−4)f(n) = O(c
log n+f(n)
1) (2)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 183

Proof of Theorem 21(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .) [there may be many of them].

• The problem is therefore that of reachability on a

graph with O(c
log n+f(n)
1) nodes.

• It is in TIME(clog n+f(n)) for some c because

reachability is in TIME(nk) for some k and

[

c
log n+f(n)
1

]k

= (ck
1)log n+f(n).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 184

The Grand Chain of Inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• It is known that PSPACE (EXP.

• By Corollary 20 (p. 177), we know L (PSPACE.

• The chain must break somewhere between L and

PSPACE.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.a

aCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 185

客人
刪除線

客人
文字注釋
Thanks to Mr Chin-Luei Chang (R93922004) on October 22, 2004.

Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 92),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof that the exponential gap is inherent,

however.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic, a

polynomial, by Savitch’s theorem.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 186

Savitch’s Theorem

Theorem 22 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, dlog ne) holds.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 187

The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i − 1) and PATH(z, y, i − 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, dlog ne) with a depth-first search

on a graph with nodes (x, y, i)s (see next page).

• Like stacks in recursive calls, we keep only the current

path of (x, y, i)s.

• The space requirement is proportional to the depth of

the tree, dlog ne.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 188

� � � � � � � � � � 	
 � �

� � � � � � �
 � � 	
 � � � � � � � � �
 � � � � 	
 � � � �

�
� � �

�

�
� 	
�

�
� 	
�

• Depth is dlog ne, and each node (x, y, i) needs space

O(log n).

• The total space is O(log2 n).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 189

The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ G then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i − 1) and PATH(z, y, i − 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 190

The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 23 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s theorem to the configuration graph of

the NTM on the input.

• From p. 183, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we supply the whole graph before applying

Savitch’s theorem, we get O(cf(n)) space!

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191

The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We check for connectedness only when i = 0, by

examining the input string.

• There, given configurations x and y, we go over the

Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 192

The Proof (concluded)

• The z variable in the algorithm simply runs through all

possible valid configurations.

• Each z has length O(f(n)) by Eq. (2) on p. 183.

• An alternative is to let z = 0, 1, . . . , O(cf(n)) and makes

sure it is a valid configuration before using it in the

recursive calls.a

aThanks to a lively class discussion on October 13, 2004.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 193

Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• It may be very powerful with respect to time as it is not

known if P = NP.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 194

Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes (p. 170).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.

aSzelepscényi (1987) and Immerman (1988).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 195

Reductions and Completeness

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 196

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for

every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to

R(x) for A.

– There must be restrictions on the complexity of

computing R.

– Otherwise, R(x) might as well solve B.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 197

Degrees of Difficulty (concluded)

• Problem A is at least as hard as problem B if B reduces

to A.

• This makes intuitive sense: If A is able to solve your

problem B, then A must be at least as powerful.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198

Reduction

x
 yes/no
R
(
x
)

R

algorithm

for A

Solving problem B by calling the algorithm for problem once

and without further processing its answer.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 199

Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.

• So some instances of A may never appear in the

reduction.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 200

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

• Note that by Theorem 21 (p. 180), R runs in polynomial

time.

• If R is a reduction from L1 to L2, then R(x) ∈ L2 is a

legitimate algorithm for x ∈ L1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 201

A Paradox?

• Degree of difficulty is not defined in terms of absolute

complexity.

• So a language B ∈ TIME(n99) may be “easier” than a

language A ∈ TIME(n3).

• This happens when B is reducible to A.

• But isn’t this a contradiction when B 6∈ TIME(nk) for

any k < 99?

• That is, how can a problem requiring n33 time be

reducible to a problem solvable in n3 time?

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 202

A Paradox? (concluded)

• The so-called contradiction is more apparent than real.

• When we solve the problem “x ∈ B?” with “R(x) ∈ A?”,

we must consider the time spent by R(x) and its length

|R(x) |.

• If |R(x) | = Ω(n33), then the time of answering

“R(x) ∈ A?” becomes Ω((n33)3) = Ω(n99).

• Suppose, on the other hand, that |R(x) | = o(n33).

• Then R(x) must run in time Ω(n99).

• In either case, there is no contradiction.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 203

hamiltonian path

• A Hamiltonian path of a graph is a path that visits

every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation

π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i + 1)) ∈ G for i = 1, 2, . . . , n − 1.

• hamiltonian path asks if a graph has a Hamiltonian

path.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 204

Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such

that R(G) is satisfiable if and only if G has a

Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is

occupied by node j.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

1

2

3

4

5

6

7
8

9

x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 206

The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj for all i, j, k with i 6= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik for all i, j, k with j 6= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) 6∈ G and k = 1, 2, . . . , n − 1.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 207

The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From Clauses of 1 and 2, for each node j there is a

unique position i such that T |= xij .

• From Clauses of 3 and 4, for each position i there is a

unique node j such that T |= xij .

• So there is a permutation π of the nodes such that

π(i) = j if and only if T |= xij .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 208

The Proof (concluded)

• Clauses of 5 furthermore guarantees that

(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 209

