
Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj: This is trivially true.

φ = ¬φ1 and a CNF is sought: Turn φ1 into a DNF and apply

de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought: Turn φ1 into a CNF and apply

de Morgan’s laws to make a DNF for φ.

φ = φ1 ∨ φ2 and a DNF is sought: Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought: Let φ1 =
∧n1

i=1
Ai and

φ2 =
∧n2

i=1
Bi be CNFs. Set φ =

∧n1

i=1

∧n2

j=1
(Ai ∨ Bj).

φ = φ1 ∧ φ2: Similar to above.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 143

Satisfiability

• A boolean expression φ is satisfiable if there is a truth

assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all

T appropriate to φ.

• φ is unsatisfiable if and only if φ is false under all

appropriate truth assignments if and only if ¬φ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 144

satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in time O(n22n) on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP

(p. 84).

• A most important problem in answering the P = NP

problem (p. 237).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 145

unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– So unsat and validity have the same complexity.

• Both are solvable in time O(n22n) on a TM by the truth

table method.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 146

Relations among sat, unsat, and validity

� � � � � � � � � � � � 	 � �
 � �

• The negation of an unsatisfiable expression is a valid

expression.

• None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 147

Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22n

such boolean functions.

– Each of the 2n truth assignments can make f true or

false.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 148

Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true under T (y1 ∧ · · · ∧ yn).

∗ y1 ∧ · · · ∧ yn is the minterm over {x1, . . . , xn} for

T .

– The lengtha is ≤ n2n ≤ 22n.

– In general, the exponential length in n cannot be

avoided (p. 156)!

aWe count the logical connectives here.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 149

Boolean Functions (concluded)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 150

Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 151

Boolean Circuits (concluded)

• Gates of sort from {true, false, x1, x2, . . .} are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by

infinitely many boolean circuits.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 152

Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬ � �

¬

� �

� � ∨ �
�

∨

� � �
�

� � ∧ �
�

∧

� � �
�

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 153

An Example

� �� �

∧� � � ∧ �� �

∨� 	 � � ∨ (¬ �� �

∨� 	 � �

∧

�
 � � � �

∨

� 	

¬∧

∨

• Circuits are more economical because of the possibility

of sharing.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 154

circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 155

Some Boolean Functions Need Exponential Circuitsa

Theorem 15 (Shannon (1949)) For any n ≥ 2, there is

an n-ary boolean function f such that no boolean circuits

with 2n/(2n) or fewer gates can compute it.

• There are 22n

different n-ary boolean functions.

• There are at most ((n + 5) × m2)m boolean circuits with

m or fewer gates (see next page).

• But ((n + 5) × m2)m < 22n

when m = 2n/(2n).

– m log2((n + 5) × m2) = 2n(1 − log2
4n2

n+5

2n
) < 2n for

n ≥ 2.

aCan be strengthened to “almost all boolean functions . . .”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 156

m
 choices

n
+5 choices

m
choices

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 157

Comments

• The lower bound is rather tight because an upper bound

is n2n (p. 149).

• In the proof, we counted the number of circuits.

• Some circuits may not be valid at all.

• Others may compute the same boolean functions.

• Both are fine because we only need an upper bound.

• We do not need to consider the outdoing edges because

they have been counted in the incoming edges.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 158

Relations between Complexity Classes

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 159

Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = uf(|x |) for any x.a

– Mf halts after O(|x | + f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is basically bounded by f(n).

aThis point will become clear in Proposition 16 on p. 164.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 160

Examples of Proper Functions

• Most “reasonable” functions are proper: c, dlog ne,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Nonproper functions when serving as the time bounds

for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).a

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 161

Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations, the

TMs are not required to halt at all.

• When the space is bounded by a proper function f ,

computations can be assumed to halt:

– Run the TM associated with f to produce an output

of length f(n) first.

– The space-bound computation must repeat a

configuration if it runs for more than cn+f(n) steps

for some c (p. 183).

– So we can count steps to prevent infinite loops.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 162

Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precise f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

∗ If M is a TM with input and output, we exclude

the first and the last strings.

• M can be deterministic or nondeterministic.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 163

Precise TMs Are General

Proposition 16 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n + f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”

or an “alarm clock.”

aIt can be deterministic or nondeterministic.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164

The Proof (continued)

• If f is a time bound:

– The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

– M ′ stops at the moment the “clock” string is

exhausted—even if M(x) stops before that time.

– The time bound is therefore O(|x | + f(|x |)).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165

The Proof (concluded)

• If f is a space bound:

– M ′ simulates on Mf ’s output string.

– The total space, not counting the input string, is

O(f(n)).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 166

Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 167

Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

L = SPACE(log n),

NL = NSPACE(log n).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168

Complements of Nondeterministic Classes

• From p. 128, we know R, RE, and coRE are distinct.

– coRE contains the complements of languages in RE,

not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the

language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.

– hamiltonian path complement is the set of

graphs without a Hamiltonian path.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 169

The Co-Classes

• For any complexity class C, coC denotes the class

{L̄ : L ∈ C}.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.

– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to

one that decides L̄ within the same time or space

bound by reversing the “yes” and “no” states.

• Whether nondeterministic classes for time are closed

under complement is not known (p. 82).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 170

Comments

• Then coC is the class

{L̄ : L ∈ C}.

– So L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L 6∈ coC.

– coC is not defined as C̄.

• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.

• Then coC = {{1, 3, 5, 7, 9, . . .}}.

• But C̄ = 2{1,2,3,...}∗ − {{2, 4, 6, 8, 10, . . .}}.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 171

The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ; x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 172

Hf ∈ TIME(f(n)3)

• For each input M ; x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 66), the universal

TM (p. 116), and the linear speedup theorem (p. 71).

– Our simulator accepts M ; x if and only if M accepts

x before the alarm clock runs out.

• From p. 70, the total running time is O(`Mk2
Mf(n)2),

where `M is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As `Mk2
M = O(n), the running time is O(f(n)3), where

the constant is independent of M .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 173

Hf 6∈ TIME(f(bn/2c))
• Suppose TM MHf

decides Hf in time f(bn/2c).

• Consider machine Df (M):

if MHf
(M ; M) = “yes” then “no” else “yes”

• Df on input M runs in the same time as MHf
on input

M ; M , i.e., in time f(b 2n+1
2 c) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ;M .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 174

客人
文字注釋
Mr Hong-Lung Wang (F92922085) and Mr Hsiao-Fei Liu (F92922019).

The Proof (concluded)

• First,

Df (Df) = “yes”

⇒ Df ; Df 6∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df) = “no”

a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 175

The Time Hierarchy Theorem

Theorem 17 If f(n) ≥ n is proper, then

TIME(f(n)) (TIME(f(2n + 1)3).

• The quantified halting problem makes it so.

Corollary 18 P (EXP.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 17,

TIME(2n) (TIME((22n+1)3) ⊆ TIME(2n2

) ⊆ EXP.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 176

The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If f(n) is

proper, then

SPACE(f(n)) (SPACE(f(n) log f(n)).

Corollary 20 L (PSPACE.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 177

