Any Expression ¢ Can Be Converted into CNFs and DNFs
¢ = x;: This is trivially true.

¢ = ¢ and a CNF is sought: Turn ¢; into a DNF and apply
de Morgan’s laws to make a CNF for ¢.

¢ = -¢1 and a DNF is sought: Turn ¢; into a CNF and apply
de Morgan’s laws to make a DNF for ¢.

¢ = ¢1V ¢2 and a DNF is sought: Make ¢1 and ¢2 DNFs.

® = ¢1V ¢2 and a CNF is sought: Let ¢1 = A\, A; and
¢2 = \;2, Bi be CNFs. Set ¢ = A1) \J2, (A V B;).

1=

¢ = ¢1 N ¢2: Similar to above.

SATISFIABILITY (SAT)

e The length of a boolean expression is the length of the

string encoding it.
® SATISFIABILITY (SAT): Given a CNF ¢, is it satisfiable?

e Solvable in time O(n?2") on a TM by the truth table
method.

e Solvable in polynomial time on an NTM, hence in NP
(p. 84).

e A most important problem in answering the P = NP
problem (p. 237).
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Satisfiability

e A boolean expression ¢ is satisfiable if there is a truth
assignment T appropriate to it such that T = ¢.

e ¢ is valid or a tautology,* written |= ¢, if T = ¢ for all
T appropriate to ¢.

e ¢ is unsatisfiable if and only if ¢ is false under all
appropriate truth assignments if and only if —¢ is valid.

aWittgenstein (1889-1951) in 1922. Wittgenstein is one of the
most important philosophers of all time. “God has arrived,” the great
economist Keynes (1883-1946) said of him on January 18, 1928. “I met
him on the 5:15 train.”
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UNSATISFIABILITY (UNSAT or SAT COMPLEMENT)
and VALIDITY

e UNSAT (SAT COMPLEMENT): Given a boolean expression
¢, is it unsatisfiable?

e VALIDITY: Given a boolean expression ¢, is it valid?
— ¢ is valid if and only if —¢ is unsatisfiable.
— So UNSAT and VALIDITY have the same complexity.

e Both are solvable in time O(n?2") on a TM by the truth
table method.
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Relations among SAT, UNSAT, and VALIDITY Boolean Functions (continued)

o e A boolean expression expresses a boolean function.

— Think of its truth value under all truth assignments.
Valid Unsatisfiable e A boolean function expresses a boolean expression.

- \/T = ¢, literal y; is true under T(yl ARERNA y”/)’

* Y1 A+ Ay, is the minterm over {z1,...,z,} for
e The negation of an unsatisfiable expression is a valid — The length® is < n2" < 227,
expression. — In general, the exponential length in n cannot be
e None of the three problems—satisfiability, avoided (p. 156)!
unsatisfiability, validity—are known to be in P. “We count the logical connectives here.
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Boolean Functions (concluded)
Boolean Functions

e An n-ary boolean function is a function 21 22 f($117 72)
f: {true, false}” — {true, false}. 0 1 1

e It can be represented by a truth table. 1 0 0

e There are 22" such boolean functions. 1 L 1

— Each of the 2™ truth assignments can make f true or The corresponding boolean expression:

false. (mx1 A —xo) V (mxy Axo) V(21 A 22).
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Boolean Circuits

A boolean circuit is a graph C' whose nodes are the
gates.

e There are no cycles in C.

e All nodes have indegree (number of incoming edges)
equal to 0, 1, or 2.
e Each gate has a sort from
{true, false, V, A\, 7,21, Z2,...}.
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Boolean Circuits (concluded)
e Gates of sort from {true,false,z1,Z2,...} are the

inputs of C' and have an indegree of zero.

e The output gate(s) has no outgoing edges.

A boolean circuit computes a boolean function.

The same boolean function can be computed by
infinitely many boolean circuits.
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Boolean Circuits and Expressions
e They are equivalent representations.

e One can construct one from the other:

=
=x

Y
™
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An Example

((x,Ox, )00, 0x,)) O(=(x;0x,))
U]

N
DAD/
PR

e Circuits are more economical because of the possibility
of sharing.
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CIRCUIT SAT and CIRCUIT VALUE _
n+5 choices

CIRCUIT SAT: Given a circuit, is there a truth assignment
such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the
circuit has no variable gates.

e CIRCUIT SAT € NP: Guess a truth assignment and then
evaluate the circuit.

e CIRCUIT VALUE € P: Evaluate the circuit from the input

gates gradually towards the output gate. m choices m choices
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Some Boolean Functions Need Exponential Circuits®
Comments

Theorem 15 (Shannon (1949)) For any n > 2, there is
an n-ary boolean function f such that no boolean circuits e The lower bound is rather tight because an upper bound
with 2™ /(2n) or fewer gates can compute it. is n2™ (p. 149).

e There are 22" different n-ary boolean functions. e In the proof, we counted the number of circuits.

e There are at most ((n +5) x m?)™ boolean circuits with e Some circuits may not be valid at all.

m or fewer gates (see next page). e Others may compute the same boolean functions.

2\m 2m __ on
e But ((n+5) xm?)™ <22 when m =2"/(2n). e Both are fine because we only need an upper bound.

2\ _ 9n log 37_L25 n
— mlogy((n+5) x m*) = 2"(1 — —5=+) < 2" for e We do not need to consider the outdoing edges because

n=2. they have been counted in the incoming edges.

2Can be strengthened to “almost all boolean functions ...”
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Examples of Proper Functions

e Most “reasonable” functions are proper: ¢, [logn],
polynomials of n, 2™, \/n, n!, ete.

If f and g are proper, then so are f + g, fg, and 29.
e Nonproper functions when serving as the time bounds

for complexity classes spoil “the theory building.”

— For example, TIME(f(n)) = TIME(2(™) for some
recursive function f (the gap theorem).?

Relations between Complexity Classes

Only proper functions f will be used in TIME(f(n)),
SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).
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Proper (Complexity) Functions Space-Bounded Computation and Proper Functions

o We say that f: N — Nis a proper (complexity) e In the definition of space-bounded computations, the

function if the following hold: TMs are not required to halt at all.

— f is nondecreasing.
— There is a k-string TM M such that
My (z) = U= for any z.2

— M halts after O(|z |+ f(|z|)) steps.

e When the space is bounded by a proper function f,
computations can be assumed to halt:

— Run the TM associated with f to produce an output

of length f(n) first.

- M 5 S besides its input z. .
7 uses O(f(|z|)) space besides its input z — The space-bound computation must repeat a

e My’s behavior depends only on |z | not x’s contents. configuration if it runs for more than ¢/ steps

e My’s running time is basically bounded by f(n). for some ¢ (p. 183).

—— ) L — So we can count steps to prevent infinite loops.
2This point will become clear in Proposition 16 on p. 164.
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Precise Turing Machines

e A TM M is precise if there are functions f and ¢ such
that for every n € N, for every z of length n, and for
every computation path of M,

— M halts after precise f(n) steps, and
— All of its strings are of length precisely g(n) at
halting.
x If M is a TM with input and output, we exclude
the first and the last strings.

e M can be deterministic or nondeterministic.
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Precise TMs Are General

Proposition 16 Suppose a TM* M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M’ which decides L in time O(n + f(n)) (space O(f(n)),

respectively).

e M’ on input x first simulates the TM M associated

with the proper function f on .

4

e My’s output of length f(|z|) will serve as a “yardstick”

or an “alarm clock.”

2]t can be deterministic or nondeterministic.
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The Proof (continued)

e If f is a time bound:

— The simulation of each step of M on x is matched by
advancing the cursor on the “clock” string.
— M’ stops at the moment the “clock” string is

exhausted—even if M (x) stops before that time.

— The time bound is therefore O(|z |+ f(|z|)).
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The Proof (concluded)

o If f is a space bound:
— M’ simulates on My’s output string.

— The total space, not counting the input string, is

O(f(n)).
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Complements of Nondeterministic Classes

) e From p. 128, we know R, RE, and coRE are distinct.
Important Complexity Classes

— coRE contains the complements of languages in RE,

e We write expressions like n* to denote the union of all not the languages not in RE.

complexity classes, one for each value of k. _
e Recall that the complement of L, denoted by L, is the

e For example, language ¥* — L.

NTIME(n"*) = U NTIME(n?). — SAT COMPLEMENT is the set of unsatisfiable boolean
J>0 expressions.

— HAMILTONIAN PATH COMPLEMENT is the set of
graphs without a Hamiltonian path.
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The Co-Classes
Important Complexity Classes (concluded
P P y ( ) e For any complexity class C, coC denotes the class

P = TIME(n"), {L:Lecy.
NP = NTIME(n*),
PSPACE = SPACE(n"),
NPSPACE = NSPACE(n*),

e Clearly, if C is a deterministic time or space complezity
class, then C = coC.

— They are said to be closed under complement.

E = TIME(2""
( k)’ — A deterministic TM deciding L can be converted to
EXP = TIME(2"), one that decides L within the same time or space
L = SPACE(logn), bound by reversing the “yes” and “no” states.
NL = NSPACE(logn). e Whether nondeterministic classes for time are closed

under complement is not known (p. 82).
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Comments

e Then coC is the class
{L:LecC}.

— So L € C if and only if L € coC.

— coC is not defined as C.

For example, suppose C = {{2,4,6,8,10,...}}.

Then coC = {{1,3,5,7,9,...}}.
e But C = 212317 {124 6,8 10,...}}.

But it is not true that L € C if and only if L ¢ coC.
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The Quantified Halting Problem
e Let f(n) > n be proper.
e Define
Hy ={M;x : M accepts input =
after at most f(|z|) steps},
where M is deterministic.

e Assume the input is binary.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 172

H; e TIME(f(n)?)
e For each input M;x, we simulate M on z with an alarm
clock of length f(]z|).
— Use the single-string simulator (p. 66), the universal
TM (p. 116), and the linear speedup theorem (p. 71).
— Our simulator accepts M; x if and only if M accepts

xz before the alarm clock runs out.

e From p. 70, the total running time is O(¢prk3, f(n)?),
where £, is the length to encode each symbol or state of
M and kjps is M’s number of strings.

e As lyk%, = O(n), the running time is O(f(n)?), where
the constant is independent of M.
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Hy & TIME(f(|n/2]))

e Suppose TM My, decides Hy in time f([n/2]).
e Consider machine Df(M):

if My, (M; M) = “yes” then “no” else “yes”

e Dy on input M runs in the same time as My, on input
M; M, ie., in time f([2%]) = f(n), where n = | M |.2

aA student pointed out on October 6, 2004, that this estimation omits
the time to write down M; M.
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e First,

=
=

=

The Proof (concluded)

Dy(Dy) = “yes”
Dy; Dy & Hy

D¢ does not accept Dy within time f(| Dy |)

D¢(Dy) = “no”

a contradiction

e Similarly, D¢(Dyf) = “no” = Ds(Dy) = “yes.”
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The Time Hierarchy Theorem
Theorem 17 If f(n) > n is proper, then
TIME(f(n)) € TIME(f(2n +1)%).
e The quantified halting problem makes it so.
Corollary 18 P C EXP.
e P C TIME(2") because poly(n) < 2™ for n large enough.
e But by Theorem 17,

TIME(2") € TIME((2>"1)?) C TIME(2" ) C EXP.
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The Space Hierarchy Theorem
Theorem 19 (Hennie and Stearns (1966)) If f(n) is

proper, then
SPACE(f(n)) € SPACE(f(n)log f(n)).

Corollary 20 L C PSPACE.
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