The Traveling Salesman Problem
e We are given n cities 1,2,...,n and integer distances d;; . . _
& o . 5 Y Time Complexity under Nondeterminism
between any two cities ¢ and j.
. e Nondeterministic machine N decides L in time f(n),
e Assume d;; = dj; for convenience. )
where f: N — N, if
e The traveling salesman problem (TspP) asks for the — N decides L, and
total distance of the shortest tour of the cities. )
— for any x € ¥*, N does not have a computation path
e The decision version TSP (D) asks if there is a tour with longer than f(|z|).
a total distance at most B, where B is an input. )
e We charge only the “depth” of the computation tree.
e Both problems are extremely important but equally
hard (p. 325 and p. 392).
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A Nondeterministic Algorithm for TSP (D)
:fori=1,2,...,ndo
Guess z; € {1,2,...,n}; {The ith city.}

1

2

3. end for Time Complexity Classes under Nondeterminism
4 Tngr 1= 20 e NTIME(f(n)) is the set of languages decided by NTMs
5: {Verification stage:} within time f ().

6: if x1,x2,..., 2, are distinct and >.7 | du; z;,, < B then

7i o “yes”; e NTIME(f(n)) is a complexity class.

8: else

9:  “no”;

10: end if
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NP

e Define
NP = |_J NTIME(n").
k>0 The Proof (concluded)

o Clearly P C NP. e If some path leads to “yes,” then M enters the “yes”
e Think of NP as efficiently verifiable problems. state.

— Boolean satisfiability (SAT). e If none of the paths leads to “yes,” then M enters the

— TSP (D). “no” state.

— Hamiltonian path. Corollary 6 NTIME(f(n))) C J..; TIME(c/ ™).

— Graph colorability.

e The most important open problem in computer science
is whether P = NP.
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Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N NTIME vs. TIME
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(c/ (™), where ¢ > 1 is some constant
depending on N.

e Does converting an NTM into a TM require exploring
all the computation paths of the NTM as done in

Theorem 57
e On input x, M goes down every computation path of N

using depth-first search (but M does not know f(n)).

— As M is time-bounded, the depth-first search will not
run indefinitely.

e This is the most important question in theory with
practical implications.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 92 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 94



The First Try in NSPACE(nlogn)
o . 1: x1 = a; {Assume a # b.}
Nondeterministic Space Complexity Classes
P P y 2: forv=2,3,...,ndo
e Let L be a language. 3:  Guess z; € {v1,v2,...,v,}; {The ith node.}
e Then 4: end for
L € NSPACE(f(n)) 5: fori=2,3,...,ndo
6: if (-ri—l)l'i) g FE then
if there is an NTM with input and output that decides L 7. “no
and operates within space bound f(n). s end if
e NSPACE(f(n)) is a set of languages. 9: if x; = b then
10: [43 = ;
e As in the linear speedup theorem (Theorem 4 on p. 71), » (i,e;
constant coefficients do not matter. ' endi
12: end for
13: “no”;
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In Fact REACHABILITY € NSPACE(logn)
1: T :=aq;
Graph Reachability 2: fori=2,3,...,ndo
3:  Guessy € {2,3,...,n}; {The next node.
e Let G(V, E) be a directed graph (digraph). s if (x, yy) ¢ é then Jit J
e REACHABILITY asks if, given nodes a and b, does G 5: “no”;
contain a path from a to b7 6: end if
e Can be easily solved in polynomial time by breadth-first 7. if y=>0 then
search. 8: yess
9: endif
e How about the nondeterministic space complexity? 0 z=y;
11: end for
12: “no”;
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Space Analysis

Variables ¢, , and y each require O(logn) bits.

Testing (z,y) € E is accomplished by consulting the
input string with counters of O(logn) bits long.

e Hence

REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node

also has the same complexity.

e REACHABILITY € P (p. 185).
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It seemed unworthy of a grown man
to spend his time on such trivialities,
but what was I to do?

— Bertrand Russell (1872-1970),
Autobiography, Vol. 1
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Infinite Sets

e A set is countable if it is finite or if it can be put in
one-one correspondence with N, the set of natural

numbers.
— Set of integers Z.
¥ 0-20,1-1,2-33<5,...,—-1<2 -2«
4, -3 —6,....

Set of positive integers Z*: i — 1 < i.

Set of odd integers: (i —1)/2 < 1.

— Set of rational numbers: See next page.

Set of squared integers: ¢ < Vi.
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Rational Numbers Are Countable
VP 740 2D e Cardinality (concluded)
2 4 e |A| < |B] if there is a one-to-one correspondence
3 4 between A and one of B’s subsets.
o |4 < |B| if |A] < |B| but |4] # |B].
) o If AC B, then |A| < |B|.
> e But if A C B, then |A| < |B|?
6
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Cardinality
e For any set A, define |A| as A’s cardinality (size). Cardinality and Infinite Sets
e Two sets are said to have the same cardinality, written e If A and B are infinite sets, it is possible that A C B yet
as |A| = |B|.
|Al=|B] or A~DB, — The set of integers properly contains the set of odd

if there exists a one-to-one correspondence between their integers.

elements. — But the set of integers has the same cardinality as

e 24 denotes set A’s power set, that is {B: B C A}. the set of odd integers (p. 102).

— If |A| = k, then [24] = 2F, e A lot of “paradoxes.”

— So |A| < [24] when A is finite.
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Hilbert's® Paradox of the Grand Hotel

e For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

e Now let us imagine a hotel with an infinite number of

rooms, and all the rooms are occupied.
e A new guest comes and asks for a room.

e “But of course!” exclaims the proprietor, and he moves
the person previously occupying Room 1 into Room 2,

the person from Room 2 into Room 3, and so on .. ..

e The new customer occupies Room 1.

2David Hilbert (1862-1943).

Galileo's* Paradox (1638)

e The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

e This is contrary to the axiom of Euclid® that the whole

is greater than any of its proper parts.

e Resolution of paradoxes: Pick the notion that results in
“better” mathematics.

e The difference between a mathematical paradox and a
contradiction is often a matter of opinion.

aGalileo (1564-1642).
PEuclid (325 B.C.-265 B.C.).
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Hilbert's Paradox of the Grand Hotel (concluded)

e Let us imagine now a hotel with an infinite number of
rooms, all taken up, and an infinite number of new

guests who come in and ask for rooms.

)

e “Certainly, gentlemen,” says the proprietor, “just wait a

minute.”

e He moves the occupant of Room 1 into Room 2, the
occupant of Room 2 into Room 4, and so on.

e Now all odd-numbered rooms become free and the
infinity of new guests can be accommodated in them.

e “There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)

Cantor's® Theorem

Theorem 7 The set of all subsets of N (2V) is infinite and
not countable.

e Suppose it is countable with f : N — 2 being a
bijection.

e Consider theset B={keN:k ¢ f(k)} CN.

e Suppose B = f(n) for some n € N.

aGeorg Cantor (1845-1918). According to Kac and Ulam, “[If] one
had to name a single person whose work has had the most decisive in-
fluence on the present spirit of mathematics, it would almost surely be
Georg Cantor.”
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A Corollary of Cantor's Theorem
The Proof (concluded)

If n € f(n), then n € B, but then n ¢ B by B’s

Corollary 8 For any set T, finite or infinite,

T
definition. [T <|2"].
o It n ¢ f(n), then n & B, but then n € B by B's e The inequality holds in the finite A case.
definition. e Assume A is infinite now.
e Hence B # f(n) for any n. e |T| < |27|: Consider f(z)= {x}.

f is not a bijection, a contradiction. The strict inequality uses the same argument as

Cantor’s theorem.
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Cantor,S Diagonalization Argument [[lustrated A Second Coro”ary of Cantor's Theorem
A Corollary 9 The set of all functions on N is not countable.
U e Every function f : N — {0,1} determines a set
f3)
n: f(n)=1} CN.
fid {n:f(n)=1}C
75 e And vice versa.
f6) . o
e So the set of functions from N to {0, 1} has cardinality
| 2.
B

e Corollary 8 (p. 113) then implies the claim.
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Existence of Uncomputable Problems

e Every program is a finite sequence of Os and 1s, thus a

nonnegative integer.

e Hence every program corresponds to some integer.

The set of programs is countable.

A function is a mapping from integers to integers.

The set of functions is not countable by Corollary 9
(p. 114).

So there must exist functions for which there are no

programs.

The Halting Problem

e Undecidable problems are problems that have no
algorithms or languages that are not recursive.

e We knew undecidable problems exist (p. 115).

e We now define a concrete undecidable problem, the
halting problem:

H={M;z: M(z)#,/}.

— Does M halt on input z?
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Universal Turing Machine®

e A universal Turing machine U interprets the input
as the description of a TM M concatenated with the
description of an input to that machine, x.

— Both M and z are over the alphabet of U.
e U simulates M on x so that
UM;z) = M(x).
e U is like a modern computer, which executes any valid

machine code, or a Java Virtual machine, which
executes any valid bytecode.

2Turing (1936).
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H Is Recursively Enumerable

Use the universal TM U to simulate M on z.

When M is about to halt, U enters a “yes” state.

If M(x) diverges, so does U.

This TM accepts H.

Membership of x in any recursively enumerative

language accepted by M can be answered by asking

M;xz e H?
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H Is Not Recursive

e Suppose there is a TM My that decides H.

e Consider the program D(M) that calls Mpy: Self-Loop Paradoxes
L if MH(M;‘M) - }"es .then ) ) Cantor’s Paradox (1899): Let T be the set of all sets.
2 /" {Writing an infinite loop is easy, right?} ; , |
3. else e Then 2* C T, but we know |2 | > |T'| (p. 113)!
4 fyes’; Eubulides: The Cretan says, “All Cretans are liars.”
5: end if

Liar’s Paradox: “This sentence is false.”
e Consider D(D):

— D(D) =/= My(D;D) = “yes” = D;D € H =
D(D) #,7, a contradiction.

(D) = “yes” = My(D; D) = “no” = D;D ¢ H =

(D)

Sharon Stone in The Specialist (1994): “I'm not a

woman you can trust.”

D) =, a contradiction.

ol

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121
Comments More Undecidability
e Two levels of interpretations of M: e {M : M halts on all inputs}.
— A sequence of Os and 1s (data). — Given M;x, we construct the following machine:
— An encoding of instructions (programs). x My(y) : if y = z then M(z) else halt.

e There are no paradoxes. — M, halts on all inputs if and only if M halts on z.

— Concepts should be familiar to computer scientists. — So if the said language were recursive, H would be

— Supply a C compiler to a C compiler, a Lisp recursive, a contradiction.

interpreter to a Lisp interpreter, etc. — This technique is called reduction.
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More Undecidability (concluded)
o {M;x : there is a y such that M (z) = y}.

o {M;z;y: M(z) =y}

o {M;x : the computation M on input z uses all states of M}.
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Reductions in Proving Undecidability

Language H is known to be undecidable.

We try to find a computable transformation (or
reduction) R such that

R(z) € L if and only if z € H.

This suffices to prove that L is undecidable.

e Suppose we are asked to prove L is undecidable.
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Complements of Recursive Languages
Lemma 10 If L is recursive, then so is L.
e Let L be decided by M (which is deterministic).
e Swap the “yes” state and the “no” state of M.

e The new machine decides L.
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Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and L are

recursively enumerable.

e Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

e Simulate M and M in an interleaved fashion.
o If M accepts, then z € L and M’ halts on state “yes.”

o If M accepts, then x ¢ L and M’ halts on state “no.”
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A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive,

then L is not recursively enumerable.
e Suppose L is recursively enumerable.
e Then both L and L are recursively enumerable.
e By Lemma 11 (p. 126), L is recursive, a contradiction.

Corollary 13 H is not recursively enumerable.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are
recursively enumerable (note that coRE is not RE).

R: The set of all recursive languages.
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R, RE, and coRE (concluded)
R = RENcoRE (p. 126).

e There exist languages in RE but not in R and not in
coRE.

— Such as H (p. 118 and p. 119).

There are languages in coRE but not in RE.
— Such as H (p. 127).

e There are languages in neither RE nor coRE.
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RE coRE
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Consequences of Rice's Theorem

Notations
Corollary 14 The following properties of recursively
e Suppose M is a TM accepting L. enumerative sets are undecidable.
o Write L(M) = L.

— In particular, if M(z) = for all x, then L(M) = 0.

e FEmptiness.

o Finiteness.

e If M(x) is never “yes” nor /" (as required by the e Regularity
definition of acceptance), we let L(M) = 0. '

e Context-freedom.
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Nontrivial Properties of Sets in RE

A property of a set accepted by a TM (a recursively
enumerable set) is trivial if it is always true or false.

— Is a recursively enumerable set accepted by a TM?
Always true.

It can be defined by the set C of recursively enumerable

sets that satisfy it. Boolean Logic

The property is nontrivial if C # RE and C # 0.

Up to now, all nontrivial properties of recursively
enumerable sets are undecidable (pp. 122-123).

In fact, Rice’s theorem confirms that.
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Boolean Logic?

Boolean variables: zi,zo,.... ) )
Satisfaction
Literals: z;, —x;.

e T |= ¢ means boolean expression ¢ is true under T’; in

Boolean connectives: V, A, —. .
’ other words, T satisfies ¢.

Boolean expressions: Boolean variables, —¢ (negation),

¢1 V ¢2 (disjunction), ¢1 A ¢2 (conjunction). * ¢1 and ¢ are equivalent, written

o \/©'_ | ¢ stands for ¢1 Va2 V-V dp. b1 = o,

o A, ¢ stands for ¢1 Aga A+ A dn.
Niza @ $1 A b2 ¢ if for any truth assignment 7" appropriate to both of

Implications: ¢1 = ¢2 is a shorthand for —=¢; V ¢2. them, T |: ¢1 if and only if T' = ¢s.

Biconditionals: ¢; < ¢2 is a shorthand for — Equivalently, T |= (¢1 < ¢2).
(61 = ¢2) A (d2 = ¢1).

2Boole (1815-1864) in 1847.
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Truth Tables

Truth Assignments e Suppose ¢ has n boolean variables.
e A truth assignment 7' is a mapping from boolean e A truth table contains 2" rows, one for each possible
variables to truth values true and false. truth assignment of the n variables together with the
e A truth assignment is appropriate to boolean truth value of ¢ under that truth assignment.
expression ¢ if it defines the truth value for every e A truth table can be used to prove if two boolean
variable in ¢. expressions are equivalent.
— {1 = true,z; = false} is appropriate to z1 V 22. — Check if they give identical truth values under all 2"

truth assignments.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 138



A Truth Table

p a|phaq
0 0] o
0 1| 0
1ol o
11|
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De Morgan's* Laws
e De Morgan’s laws say that
“(d1Ad2) = =1V g,
(1 V) = 1 Ao
e Here is a proof for the first law:
o1 P2 | 7(P1AP2) —d1V i
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0
aAugustus DeMorgan (1806-1871).
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Conjunctive Normal Forms

form (CNF) if
o=\,
i=1

literals.

containing an empty clause is not.

e A boolean expression ¢ is in conjunctive normal

where each clause C; is the disjunction of one or more

e For example, (x1V 22) A (21 V —~x2) A (22 V 23) is in CNF.

e Convention: An empty CNF is satisfiable, but a CNF
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Disjunctive Normal Forms

(DNF) if
¢ = \/ Di7
i=1

more literals.
e For example,
(.’L’l A\ ZL'Q) V (.’L’l A\ —|£L'2) V (ZL’Q A 1113)

is in DNF.

e A boolean expression ¢ is in disjunctive normal form

where each implicant D; is the conjunction of one or
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