Comments on Lower-Bound Proofs

e They are usually difficult.
— Worthy of a Ph.D. degree.

e A lower bound that matches a known upper bound

(given by an efficient algorithm) shows that the
algorithm is optimal.

— The simple O(n?) algorithm for PALINDROME is

optimal.

e This happens rarely and is model dependent.

— Searching, sorting, PALINDROME, matrix-vector
multiplication, etc.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51

Decidability and Recursive Languages

Let L C (X —{||})* be a language, i.e., a set of strings
of symbols with a finite length.

— For example, {0,01, 10,210, 1010, .. .}.

Let M be a TM such that for any string x:
— If z € L, then M(x) = “yes.”
— If x € L, then M (x) = “no.”

We say M decides L.

If L is decided by some TM, then L is recursive.

— Palindromes over {0,1}* are recursive.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52

Acceptability and Recursively Enumerable Languages

e Let L C (X —{[|})* be a language.

e Let M be a TM such that for any string x:
— If z € L, then M (x) = “yes.”
— If x ¢ L, then M (x) ="

e We say M accepts L.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53

Acceptability and Recursively Enumerable Languages
(concluded)

o If L is accepted by some TM, then L is a recursively

enumerable language.

— A recursively enumerable language can be generated
by a TM, thus the name.

— That is, there is an algorithm such that for every
x € L, it will be printed out eventually.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively

enumerable.
e We need to design a TM that accepts L.
o Let TM M decide L.

We next modify M’s program to obtain M’ that accepts
L.

M’ is identical to M except that when M is about to
halt with a “no” state, M’ goes into an infinite loop.

M’ accepts L.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55

Turing-Computable Functions

o Let f: (X —{|})" — X"

— Optimization problems, root finding problems, etc.
o Let M be a TM with alphabet ..

e M computes f if for any string x € (X — {| |})*,
= f(x).

e We call f a recursive function® if such an M exists.

aGodel (1931).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56

Church’s Thesis or the Church-Turing Thesis

What is computable is Turing-computable; TMs are
algorithms (Kleene 1953).

Many other computation models have been proposed.

— Recursive function (Godel), A calculus (Church),
formal language (Post), assembly language-like RAM
(Shepherdson & Sturgis), boolean circuits (Shannon),
extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.
All have been proved to be equivalent.

No “intuitively computable” problems have been shown

not to be Turing-computable (yet).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57

Extended Church’s Thesis

e All “reasonably succinct encodings” of problems are

polynomaially related.

— Representations of a graph as an adjacency matrix

and as a linked list are both succinct.
— The unary representation of numbers is not succinct.

— The binary representation of numbers is succinct.
x 1001 vs. 111111111.

e All numbers for TMs will be binary from now on.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58

Turing Machines with Multiple Strings

A k-string Turing machine (TM) is a quadruple
M = (K,%,6,s).

K, >, s are as before.

§: K xXF — (KU{h, “yes”, “no” }) x (X x {«, —, —})¥.

All strings start with a >.
The first string contains the input.
Decidability and acceptability are the same as before.

When TMs compute functions, the output is on the last
(kth) string.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59

A 2-String TM

'

>1000110000111001110001110uuIL

v

>111110000uuuLLUUULULLLUU UL

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60

PALINDROME Revisited

e A 2-string TM can decide PALINDROME in O(n) steps.

— It copies the input to the second string.

The cursor of the first string is positioned at the first
symbol of the input.

The cursor of the second string is positioned at the
last symbol of the input.

The two cursors are then moved in opposite
directions until the ends are reached.

The machine accepts if and only if the symbols under
the two cursors are identical at all steps.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61

i

>ababbaabbaabbaabbabaliul

v
>ababbaabbaabbaabbabauul

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62

Configurations and Yielding

e The concept of configuration and yielding is the same as

before except that a configuration is a (2k 4 1)-triple

(Q7w17u17w27u27 .- .,’UJk,Uk).

— w;u; is the ith string.
— The ith cursor is reading the last symbol of w;.

— Recall that > is each w;’s first symbol.

e The k-string TM’s initial configuration is

2k

7\

(s,D>,x, >, €,>>,€,...,>,€).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63

Time Complexity

The multistring TM is the basis of our notion of the
time expended by TM computations.

If for a k-string TM M and input x, the TM halts after
t steps, then the time required by M on input z is t.

If M(x) =", then the time required by M on x is co.

Machine M operates within time f(n) for f: N — N
if for any input string x, the time required by M on x is
at most f(|x]).

— | x| is the length of string x.

— Function f(n) is a time bound for M.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64

Time Complexity Classes?®

Suppose language L C (3 — {| |})* is decided by a
multistring TM operating in time f(n).

We say L € TIME(f(n)).
TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

TIME(f(n)) is a complexity class.
— PALINDROME is in TIME(f(n)), where f(n) = O(n).

2Hartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns
(1965).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65

The Simulation Technique

Theorem 3 Given any k-string M operating within time
f(n), there exists a (single-string) M’ operating within time
O(f(n)?) such that M(x) = M'(x) for any input x.

e The single string of M’ implements the k strings of M.

e Represent configuration (q, w1, u1, wa, us, ..., wg, u) of

M by configuration

(q, >wiuy <wius < -+ < wrug < <)

of M’.
— < is a special delimiter.

— w, is w; with the first and last symbols “primed.”

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66

The Proof (continued)

e The initial configuration of M’ is

k — 1 pairs

N\

(s,>>’x<r>’<--->’£<).

e To simulate each move of M:

— M’ scans the string to pick up the k symbols under
the cursors.
+ The states of M’ must include K x ¥F to

remember them.
x The transition functions of M’ must also reflect it.

— M’ then changes the string to reflect the overwriting

of symbols and cursor movements of M.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67

The Proof (continued)

It is possible that some strings of M need to be
lengthened.

— The linear-time algorithm on p. 36 can be used for
each such string.

The simulation continues until M halts.
M’ erases all strings of M except the last one.

Since M halts within time f(|z|), none of its strings
ever becomes longer than f(|x]).?

e The length of the string of M’ at any time is O(kf(|x|)).

2We tacitly assume f(n) > n.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68

string 1

string 2

string 3

string 4

string 1

string 2

string 3

string 4

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 69

The Proof (concluded)

e Simulating each step of M takes, per string of M,
O(kf(lz])) steps.
— O(f(|x|)) steps to collect information.
— O(kf(|x])) steps to write and, if needed, to lengthen
the string.
o M’ takes O(k*f(|x])) steps to simulate each step of M.

e As there are f(|x|) steps of M to simulate, M’ operates
within time O(k?f (] x])?).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70

Linear Speedup?

Theorem 4 Let L € TIME(f(n)). Then for any € > 0,
L € TIME(f'(n)), where f'(n) =ef(n) +n + 2.

@Hartmanis and Stearns (1965).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

Implications of the Speedup Theorem

e State size can be traded for speed.

— mF - |S[3™*fold increase to gain a speedup of O(m).

e If f(n) =cn with ¢ > 1, then ¢ can be made arbitrarily
close to 1.

o If f(n) is superlinear, say f(n) = 14n® + 31n, then the
constant in the leading term (14 in this example) can be

made arbitrarily small.
— Arbitrary linear speedup can be achieved.

— This justifies the asymptotic big-O notation.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72

P

By the linear speedup theorem, any polynomial time
bound can be represented by its leading term n”* for

some k > 1.

If L is a polynomially decidable language, it is in
TIME(n*) for some k € N.
— Clearly, TIME(n*) C TIME(n**1).

The union of all polynomially decidable languages is
denoted by P:

P = | J TIME(n").
k>0

Problems in P can be efficiently solved.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73

Charging for Space

e We do not charge the space used only for input and

output.
e Let k£ > 2 be an integer.
e A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.
The input string is read-only.
The last string, the output string, is write-only.
So its cursor never moves to the left.

The cursor of the input string does not wander off
into the | |s.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

Space Complexity
Consider a k-string TM M with input .
Assume | | is never written over by a non-| | symbol.

If M halts in configuration
(H, w1, u1,ws,us, ..., W, ug), then the space required
by M on input z is Zle [w;u; .

If M is a TM with input and output, then the space

required by M on input z is Zf:_; w;u; .

Machine M operates within space bound f(n) for
f : N — N if for any input x, the space required by M

on x is at most f(|x|).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Space Complexity Classes

Let L be a language.

Then
L € SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

SPACE(f(n)) is a set of languages.
— PALINDROME € SPACE(logn): Keep 3 pointers.

As in the linear speedup theorem (Theorem 4), constant

coefficients do not matter.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

Nondeterminism?

A nondeterministic Turing machine (NTM) is a
quadruple N = (K, 3, A, s).

K., >, s are as before.

ACK XY — (KU{h, “yes”, “no”}) x & x {—, —, —} is

a relation, not a function.
— For each state-symbol combination, there may be

more than one next steps—or none at all.

A configuration yields another configuration in one step

if there exists a rule in A that makes this happen.

2Rabin and Scott (1959).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

Computation Tree and Computation Path

\)

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

Decidability under Nondeterminism

Let L be a language and N be an NTM.

N decides L if for any z € X*, x € L if and only if there
is a sequence of valid configurations that ends in “yes.”

— It is not required that the NTM halts in all

computation paths.

— If x € L, no nondeterministic choices should lead to a

“yes” state.

What is key is the algorithm’s overall behavior not

whether it gives a correct answer for each particular run.

Determinism is a special case of nondeterminism.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

An Example

e Let L be the set of logical conclusions of a set of axioms.
— Predicates not in L may be false under the axioms.

— They may also be independent of the axioms,
meaning they can be assumed true or false without
contradicting the axioms.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

An Example (concluded)

e Let ¢ be a predicate whose validity we would like to

prove.

e Consider the nondeterministic algorithm:
: b := true;
: while the input predicate ¢ # b do
Generate a logical conclusion of b by applying
some of the axioms; {Nondeterministic choice.}
Assign this conclusion to b;

- end while

A ”

yes

e This algorithm decides L.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81

Complementing a TM's Halting States

o Let M decide L, and M’ be M after “yes” < “no”.

e If M is a (deterministic) TM, then M’ decides L

e But if M is an NTM, then M’ may not decide L.
— It is possible that both M and M’ accept = (see next
page).
— When this happens, M and M’ accept languages
that are not complements of each other.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83

A Nondeterministic Algorithm for Satisfiability

¢ is a boolean formula with n variables.
. fort=1,2,...,ndo
Guess z; € {0, 1}; {Nondeterministic choice.}

. end for
. {Verification:}

44 77

yes
. else

CCnO” ;

1

2

3

4

5. if ¢(x1,29,...,2,) =1 then
6

7

8:

9: end if

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84

The Computation Tree for Satisfiability

(13 b2 11 9 & LA {1 19 ¢ LR 11 LRI {1 LRI 11 9 & 13

N0 YeS N0 VS ¥ N0 N0 NO YES

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

Analysis

e The algorithm decides language {¢ : ¢ is satisfiable}.

— The computation tree is a complete binary tree of
depth n.

— Every computation path corresponds to a particular

truth assignment out of 2.

— ¢ is satisfiable if and only if there is a computation

path (truth assignment) that results in “yes.”

e General paradigm: Guess a “proot” and then verify it.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86

