
Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• A lower bound that matches a known upper bound

(given by an efficient algorithm) shows that the

algorithm is optimal.

– The simple O(n2) algorithm for palindrome is

optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector

multiplication, etc.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51

Decidability and Recursive Languages

• Let L ⊆ (Σ− {
⊔
})∗ be a language, i.e., a set of strings

of symbols with a finite length.

– For example, {0, 01, 10, 210, 1010, . . .}.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x 6∈ L, then M(x) = “no.”

• We say M decides L.

• If L is decided by some TM, then L is recursive.

– Palindromes over {0, 1}∗ are recursive.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52

Acceptability and Recursively Enumerable Languages

• Let L ⊆ (Σ− {
⊔
})∗ be a language.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x 6∈ L, then M(x) =↗.

• We say M accepts L.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53

Acceptability and Recursively Enumerable Languages
(concluded)

• If L is accepted by some TM, then L is a recursively

enumerable language.

– A recursively enumerable language can be generated

by a TM, thus the name.

– That is, there is an algorithm such that for every

x ∈ L, it will be printed out eventually.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively

enumerable.

• We need to design a TM that accepts L.

• Let TM M decide L.

• We next modify M ’s program to obtain M ′ that accepts

L.

• M ′ is identical to M except that when M is about to

halt with a “no” state, M ′ goes into an infinite loop.

• M ′ accepts L.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55

Turing-Computable Functions

• Let f : (Σ− {
⊔
})∗ → Σ∗.

– Optimization problems, root finding problems, etc.

• Let M be a TM with alphabet Σ.

• M computes f if for any string x ∈ (Σ− {
⊔
})∗,

M(x) = f(x).

• We call f a recursive functiona if such an M exists.

aGödel (1931).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56

Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are

algorithms (Kleene 1953).

• Many other computation models have been proposed.

– Recursive function (Gödel), λ calculus (Church),

formal language (Post), assembly language-like RAM

(Shepherdson & Sturgis), boolean circuits (Shannon),

extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.

• No “intuitively computable” problems have been shown

not to be Turing-computable (yet).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57

Extended Church’s Thesis

• All “reasonably succinct encodings” of problems are

polynomially related.

– Representations of a graph as an adjacency matrix

and as a linked list are both succinct.

– The unary representation of numbers is not succinct.

– The binary representation of numbers is succinct.

∗ 1001 vs. 111111111.

• All numbers for TMs will be binary from now on.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58

Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple

M = (K, Σ, δ, s).

• K, Σ, s are as before.

• δ : K ×Σk → (K ∪{h, “yes”, “no”})× (Σ×{←,→,−})k.

• All strings start with a �.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is on the last

(kth) string.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59

A 2-String TM

δ
� 1000110000111001110001110 � � �

� 111110000 � � � � � � � � � � � � � � � � � � �

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60

palindrome Revisited

• A 2-string TM can decide palindrome in O(n) steps.

– It copies the input to the second string.

– The cursor of the first string is positioned at the first

symbol of the input.

– The cursor of the second string is positioned at the

last symbol of the input.

– The two cursors are then moved in opposite

directions until the ends are reached.

– The machine accepts if and only if the symbols under

the two cursors are identical at all steps.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61

δ
� ababbaabbaabbaabbaba � � �

� ababbaabbaabbaabbaba � � �

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62

Configurations and Yielding

• The concept of configuration and yielding is the same as

before except that a configuration is a (2k + 1)-triple

(q, w1, u1, w2, u2, . . . , wk, uk).

– wiui is the ith string.

– The ith cursor is reading the last symbol of wi.

– Recall that � is each wi’s first symbol.

• The k-string TM’s initial configuration is

(s,

2k
︷ ︸︸ ︷

�, x, �, ε, �, ε, . . . , �, ε).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63

Time Complexity

• The multistring TM is the basis of our notion of the

time expended by TM computations.

• If for a k-string TM M and input x, the TM halts after

t steps, then the time required by M on input x is t.

• If M(x) =↗, then the time required by M on x is ∞.

• Machine M operates within time f(n) for f : N→ N

if for any input string x, the time required by M on x is

at most f(|x |).

– |x | is the length of string x.

– Function f(n) is a time bound for M .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64

Time Complexity Classesa

• Suppose language L ⊆ (Σ− {
⊔
})∗ is decided by a

multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

aHartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns

(1965).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65

The Simulation Technique

Theorem 3 Given any k-string M operating within time

f(n), there exists a (single-string) M ′ operating within time

O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of

M by configuration

(q, �w′

1u1 � w′

2u2 � · · ·� w′

kuk � �)

of M ′.

– � is a special delimiter.

– w′

i is wi with the first and last symbols “primed.”

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66

The Proof (continued)

• The initial configuration of M ′ is

(s, � �
′ x �

k − 1 pairs
︷ ︸︸ ︷

�
′
� · · ·�′

� �).

• To simulate each move of M :

– M ′ scans the string to pick up the k symbols under

the cursors.

∗ The states of M ′ must include K × Σk to

remember them.

∗ The transition functions of M ′ must also reflect it.

– M ′ then changes the string to reflect the overwriting

of symbols and cursor movements of M .

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67

The Proof (continued)

• It is possible that some strings of M need to be

lengthened.

– The linear-time algorithm on p. 36 can be used for

each such string.

• The simulation continues until M halts.

• M ′ erases all strings of M except the last one.

• Since M halts within time f(|x |), none of its strings

ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).

aWe tacitly assume f(n) ≥ n.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68

string 1
 string 2
 string 3
 string 4

string 1
 string 2
 string 3
 string 4

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 69

The Proof (concluded)

• Simulating each step of M takes, per string of M ,

O(kf(|x |)) steps.

– O(f(|x |)) steps to collect information.

– O(kf(|x |)) steps to write and, if needed, to lengthen

the string.

• M ′ takes O(k2f(|x |)) steps to simulate each step of M .

• As there are f(|x |) steps of M to simulate, M ′ operates

within time O(k2f(|x |)2).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70

Linear Speedupa

Theorem 4 Let L ∈ TIME(f(n)). Then for any ε > 0,

L ∈ TIME(f ′(n)), where f ′(n) = εf(n) + n + 2.

aHartmanis and Stearns (1965).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

Implications of the Speedup Theorem

• State size can be traded for speed.

– mk · |Σ|3mk-fold increase to gain a speedup of O(m).

• If f(n) = cn with c > 1, then c can be made arbitrarily

close to 1.

• If f(n) is superlinear, say f(n) = 14n2 + 31n, then the

constant in the leading term (14 in this example) can be

made arbitrarily small.

– Arbitrary linear speedup can be achieved.

– This justifies the asymptotic big-O notation.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72

P

• By the linear speedup theorem, any polynomial time

bound can be represented by its leading term nk for

some k ≥ 1.

• If L is a polynomially decidable language, it is in

TIME(nk) for some k ∈ N.

– Clearly, TIME(nk) ⊆ TIME(nk+1).

• The union of all polynomially decidable languages is

denoted by P:

P =
⋃

k>0

TIME(nk).

• Problems in P can be efficiently solved.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73

Charging for Space

• We do not charge the space used only for input and

output.

• Let k > 2 be an integer.

• A k-string Turing machine with input and output

is a k-string TM that satisfies the following conditions.

– The input string is read-only.

– The last string, the output string, is write-only.

– So its cursor never moves to the left.

– The cursor of the input string does not wander off

into the
⊔

s.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

Space Complexity

• Consider a k-string TM M with input x.

• Assume
⊔

is never written over by a non-
⊔

symbol.

• If M halts in configuration

(H, w1, u1, w2, u2, . . . , wk, uk), then the space required

by M on input x is
∑k

i=1 |wiui|.

• If M is a TM with input and output, then the space

required by M on input x is
∑k−1

i=2 |wiui|.

• Machine M operates within space bound f(n) for

f : N→ N if for any input x, the space required by M

on x is at most f(|x |).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Space Complexity Classes

• Let L be a language.

• Then

L ∈ SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

– palindrome ∈ SPACE(log n): Keep 3 pointers.

• As in the linear speedup theorem (Theorem 4), constant

coefficients do not matter.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

Nondeterminisma

• A nondeterministic Turing machine (NTM) is a

quadruple N = (K, Σ, ∆, s).

• K, Σ, s are as before.

• ∆ ⊆ K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is

a relation, not a function.

– For each state-symbol combination, there may be

more than one next steps—or none at all.

• A configuration yields another configuration in one step

if there exists a rule in ∆ that makes this happen.

aRabin and Scott (1959).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

Computation Tree and Computation Path

�
� �

�

�

�
� �

�

�
� �

�

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there

is a sequence of valid configurations that ends in “yes.”

– It is not required that the NTM halts in all

computation paths.

– If x 6∈ L, no nondeterministic choices should lead to a

“yes” state.

• What is key is the algorithm’s overall behavior not

whether it gives a correct answer for each particular run.

• Determinism is a special case of nondeterminism.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

An Example

• Let L be the set of logical conclusions of a set of axioms.

– Predicates not in L may be false under the axioms.

– They may also be independent of the axioms,

meaning they can be assumed true or false without

contradicting the axioms.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

An Example (concluded)

• Let φ be a predicate whose validity we would like to

prove.

• Consider the nondeterministic algorithm:

1: b := true;

2: while the input predicate φ 6= b do

3: Generate a logical conclusion of b by applying

some of the axioms; {Nondeterministic choice.}

4: Assign this conclusion to b;

5: end while

6: “yes”;

• This algorithm decides L.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81

Complementing a TM’s Halting States

• Let M decide L, and M ′ be M after “yes”↔ “no”.

• If M is a (deterministic) TM, then M ′ decides L̄.

• But if M is an NTM, then M ′ may not decide L̄.

– It is possible that both M and M ′ accept x (see next

page).

– When this happens, M and M ′ accept languages

that are not complements of each other.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82

�
�� �

�

�

�
� �

�

�
�� �

�

�

�

�
� �

�

�

�
�� �

�

�
� �

�

�

�

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83

A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}

3: end for

4: {Verification:}

5: if φ(x1, x2, . . . , xn) = 1 then

6: “yes”;

7: else

8: “no”;

9: end if

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84

The Computation Tree for Satisfiability

�
�� �

��
� �

� �
� �

� �
�� �

��
�� �

� �
�� �

��
� �

� �
� �

� �
� �

�

� �
	

� �
	 �

�

	 �

� �
	

� �
	

� �
	 �

� �
	 �

� �
	

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

Analysis

• The algorithm decides language {φ : φ is satisfiable}.

– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular

truth assignment out of 2n.

– φ is satisfiable if and only if there is a computation

path (truth assignment) that results in “yes.”

• General paradigm: Guess a “proof” and then verify it.

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86

