Exponential Circuit Complexity for NP-Complete Problems

- Almost all boolean functions require $\frac{2^n}{2n}$ gates to compute (generalized Theorem 16 on p. 157).
- Progress of using circuit complexity to prove exponential lower bounds for NP-complete problems has been slow.
- We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.
 - Monotone circuits are circuits without ¬ gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 430.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 553

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 242).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$\mathrm{CLIQUE}_{n,k}$

- CLIQUE_{n,k} is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - The gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE_{n,k} is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for $CLIQUE_{n,k}$ may use fewer gates.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 555

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a subcircuit with $O(k^2) \land$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n-k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if any of $X_i \subseteq V$ forms a clique.
 - The above-mentioned circuit is $CC(S_1, S_2, \dots, S_{\binom{n}{k}})$.

Razborov's Theorem

Theorem 79 (Razborov (1985)) There is a constant c such that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the resulting crude circuit has exponentially many errors.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 557

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that

$$2\binom{\ell}{2} \le k.$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p-1)^{\ell} \ell!$.
 - Recall the Erdős-Rado lemma (p. 548).

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, ..., X_m)$, where:
 - $-X_i\subseteq V$.
 - $-|X_i| \leq \ell.$
 - $-m \leq M$.
- We shall show how to approximate any circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate q_{ij} is the crude circuit $CC(\{i,j\})$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 559

The Proof (continued)

- Any monotone circuit can be considered the OR or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 - We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - $-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: Positive Examples

- Error analysis will be applied to only **positive** examples and negative examples.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 561

The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.

Positive and Negative Examples with $k=5\,$

A positive example

A negative example

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 563

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

 $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$

as the approximate or of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

• We now count the numbers of errors this approximate OR makes on the positive and negative examples.

The Proof: OR (concluded)

- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false negative** if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- How many false positives and false negatives are introduced by $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$?

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 565

The Number of False Positives

Lemma 80 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{M}{p-1} 2^{-p} (k-1)^n$ false positives.

- Assume a plucking replaces the sunflower $\{Z_1, Z_2, \dots, Z_p\}$ with its core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in each petal Z_i (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 - * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.

Proof of Lemma 80 (continued)

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 567

Proof of Lemma 80 (continued)

- Color nodes V at random with k-1 colors and let R(X) denote the event that there are repeated colors in set X.
- Now prob $[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p)| \neg R(Z)]$$

$$= \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)| \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. \quad (7)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 80 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}$.
- So the probability that a random coloring is a new false positive is at most 2^{-p} by inequality (7).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 569

Proof of Lemma 80 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{M}{p-1} 2^{-p} (k-1)^n$$

false positives are introduced.

The Number of False Negatives

Lemma 81 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset.
- This makes the test less stringent.
 - For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
 - So if $Y \in \mathcal{X} \cup \mathcal{Y}$ is a clique, then $\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$ also contains a clique in X.
- So plucking can only increase the number of accepted graphs.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 571

The Proof: AND

 \bullet The approximate AND of crude circuits $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ is

$$CC(pluck(\{X_i \cup Y_i : X_i \in \mathcal{X}, Y_i \in \mathcal{Y}, |X_i \cup Y_i| \le \ell\})).$$

• We now count the numbers of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AND?

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 573

The Number of False Positives

Lemma 82 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces no false positives for the same reason as above.

Proof of Lemma 82 (concluded)

- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2$.
- Each plucking reduces the number of sets by p-1.
- So pluck($\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}$) involves $\le M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 80 (p. 566).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p}(k-1)^n < M^2 2^{-p}(k-1)^n.$$

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 575

The Number of False Negatives

Lemma 83 The approximate AND introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We follow the same three-step proof as before.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
 - The clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 - As it contains $X_i \cup Y_i$, the new circuit returns true.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 574

Proof of Lemma 83 (concluded)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces $\le M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives which are cliques containing Z.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - $-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| \ge \ell.$
 - There are at most M^2 such Zs.
- Plucking introduces no false negatives.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 577

Two Summarizing Lemmas

From Lemmas 80 (p. 566) and 82 (p. 574), we have:

Lemma 84 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 81 (p. 571) and 83 (p. 576), we have:

Lemma 85 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduce "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 579

The Final Crude Circuit

Lemma 86 Every final crude circuit either is identically false—thus wrong on all positive examples—or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
- The proof of Lemma 80 (p. 566ff) shows that at least half of the colorings assign different colors to nodes in X.
- ullet So half of the negative examples have a clique in X and are accepted.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 578

The Proof (continued)

- Recall the constants on p. 558: $k = n^{1/4}$, $\ell = n^{1/8}$, $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
 - By Lemma 85 (p. 578), each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original crude circuit for $\mathtt{CLIQUE}_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2 \binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^{\ell} \ge n^{(1/12)n^{1/8}}$$

gates for large n.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 581

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 86 (p. 580) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 84 (p. 578), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

$P \neq NP \text{ Proved?}$

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 583

PSPACE and Games

- Given a boolean expression ϕ in CNF with boolean variables x_1, x_2, \ldots, x_n , is it true that $\exists x_1 \forall x_2 \cdots Q_n x_n \phi$?
- This is called quantified satisfiability or QSAT.
- This problem is like a two-person game: \exists and \forall are the two players.
- We ask then is there a winning strategy for \exists ?

$QSAT \in PSPACE$

```
1: QSAT(Q_1x_1Q_2x_2\cdots Q_nx_n\phi(x_1,\dots,x_n)):

2: if n=0 then

3: return \phi;

4: else

5: if Q_1=\exists then

6: return QSAT(Q_2x_2\cdots Q_nx_n\phi(0,x_2,\dots,x_2)) \lor QSAT(Q_2x_2\cdots Q_nx_n\phi(1,x_2,\dots,x_2));

7: else

8: return QSAT(Q_2x_2\cdots Q_nx_n\phi(0,x_2,\dots,x_2)) \land QSAT(Q_2x_2\cdots Q_nx_n\phi(1,x_2,\dots,x_2));

9: end if

10: end if
```

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 585

IP and PSPACE

- We next prove that $coNP \subset IP$.
- Shamir in 1990 proved that IP equals PSPACE using similar ideas.

Theorem 87 IP = PSPACE.

Interactive Proof for Boolean Unsatisfiability

- A 3sat formula is a conjunction of disjunctions of at most three literals.
- We shall present an interactive proof for boolean unsatisfiability.
- For any unsatisfiable 3sAT formula $\phi(x_1, x_2, \dots, x_n)$, there is an interactive proof for the fact that it is unsatisfiable.
- Therefore, $conP \subseteq IP$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 587

Arithmetization of Boolean Formulas

The idea is to arithmetize the boolean formula.

- $T \rightarrow positive integer$
- $F \rightarrow 0$
- $x_i \to x_i$
- $\bar{x_i} \rightarrow 1 x_i$
- \bullet $\lor \to +$
- $\bullet \land \rightarrow \times$
- $\phi(x_1, x_2, \dots, x_n) \to \Phi(x_1, x_2, \dots, x_n)$

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 586

The Arithmetic Version

- A boolean formula is transformed into a multivariate polynomial Φ .
- It is easy to verify that ϕ is unsatisfiable if and only if

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) = 0.$$

- But the above seems to require exponential time.
- We turn to more intricate methods.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 589

Choosing the Field

- Suppose ϕ has m clauses of length three each.
- Then $\Phi(x_1, x_2, \dots, x_n) \leq 3^m$ for any truth assignment (x_1, x_2, \dots, x_n) .
- Because there are at most 2^n truth assignments,

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) \le 2^n 3^m.$$

Choosing the Field (concluded)

• By choosing a prime $q > 2^n 3^m$ and working modulo this prime, proving unsatisfiability reduces to proving that

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) \equiv 0 \bmod q.$$

• Working under a *finite* field allows us to uniformly select a random element in the field.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 591

Binding Peggy

- Peggy has to find a sequence of polynomials that satisfy a number of restrictions.
- The restrictions are imposed by Victor: After receiving a polynomial from Peggy, Victor sets a new restriction for the next polynomial in the sequence.
- These restrictions guarantee that if ϕ is unsatisfiable, such a sequence can always be found.
- However, if ϕ is not unsatisfiable, any Peggy has only a small probability of finding such a sequence.
 - The probability is taken over Victor's coin tosses.

The probability is taken over victor is com topped.

The Algorithm

- 1: Peggy and Victor both arithmetize ϕ to obtain Φ ;
- 2: Peggy picks a prime $q > 2^n 3^m$ and sends it to Victor;
- 3: Victor rejects and stops if q is not a prime;
- 4: Victor sets v_0 to 0;
- 5: **for** $i = 1, 2, \ldots, n$ **do**
- 6: Peggy calculates $P_i^*(z) =$ $\sum_{x_{i+1}=0,1} \cdots \sum_{x_n=0,1} \Phi(r_1,\ldots,r_{i-1},z,x_{i+1},\ldots,x_n);$ 7: Peggy sends $P_i^*(z)$ to Victor;
- 8: Victor rejects and stops if $P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \mod q$ or $P_i^*(z)$'s degree exceeds m; $\{P_i^*(z) \text{ has at most } m \text{ clauses.}\}$
- Victor uniformly picks $r_i \in Z_q$ and calculates $v_i = P_i^*(r_i)$;
- Victor sends r_i to Peggy;
- 11: end for
- 12: Victor accepts iff $\Phi(r_1, r_2, \dots, r_n) \equiv v_n \mod q$;

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 593