Exponential Circuit Complexity for NP-Complete Problems

e Almost all boolean functions require % gates to

compute (generalized Theorem 16 on p. 157).

e Progress of using circuit complexity to prove exponential
lower bounds for NP-complete problems has been slow.

e We shall prove exponential lower bounds for
NP-complete problems using monotone circuits.
— Monotone circuits are circuits without — gates.

e Note that this does not settle the P vs. NP problem or
any of the conjectures on p. 430.

CLIQUE,,

® CLIQUE, j is the boolean function deciding whether a
graph G = (V, E) with n nodes has a clique of size k.

n

e The input gates are the (2

) entries of the adjacency
matrix of G.

— The gate g;; is set to true if the associated
undirected edge {7} exists.

® CLIQUE, j is a monotone function.
e Thus it can be computed by a monotone circuit.

e This does not rule out that nonmonotone circuits for
CLIQUE, ; may use fewer gates.
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The Power of Monotone Circuits

e Monotone circuits can only compute monotone boolean

functions.

e They are powerful enough to solve a P-complete
problem, MONOTONE CIRCUIT VALUE (p. 242).

e There are NP-complete problems that are not monotone;
they cannot be computed by monotone circuits at all.

e There are NP-complete problems that are monotone;
they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.
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Crude Circuits

e One possible circuit for CLIQUE, ; does the following.
1. For each S C V with |S| = k, there is a subcircuit
with O(k?) A-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the (Z)
subsets 51, S, . .. ,S(:).

e This is a monotone circuit with O(k*(})) gates, which is
exponentially large unless k£ or n — k is a constant.

e A crude circuit CC(X1, X, ..., X,,) tests if any of
X; CV forms a clique.
— The above-mentioned circuit is CC(Sy, Sy, . .. ,S(n)).
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Razborov's Theorem

Theorem 79 (Razborov (1985)) There is a constant ¢
such that for large enough n, all monotone circuits for

. . 1/8
CLIQUE, ; with k = n’4 have size at least n™ " .

e We shall approximate any monotone circuit for
CLIQUE, ; by a restricted kind of crude circuit.

e The approximation will proceed in steps: one step for
each gate of the monotone circuit.

e Each step introduces few errors (false positives and false
negatives).

e But the resulting crude circuit has exponentially many

€Irors.
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The Proof
e Fix k = nl/4.
e Fix ¢ = nl/8.

Note that

()=

p will be fixed later to be n'/8logn.

Fix M = (p — 1)
— Recall the Erdés-Rado lemma (p. 548).
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The Proof (continued)
e Each crude circuit used in the approximation process is
of the form CC(Xy,Xs,...,Xm), where:
- X;CV.
- |Xi| <L
-m< M.
e We shall show how to approximate any circuit for
CLIQUE,, i by such a crude circuit, inductively.
e The induction basis is straightforward:

— Input gate g;; is the crude circuit CC({3, j}).
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The Proof (continued)

e Any monotone circuit can be considered the OR or AND
of two subcircuits.

e We shall show how to build approximators of the overall
circuit from the approximators of the two subcircuits.

— We are given two crude circuits CC(X) and CC(Y).

X and Y are two families of at most M sets of nodes,

each set containing at most £ nodes.

We construct the approximate OR and the
approximate AND of these subcircuits.

— Then show both approximations introduce few errors.
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The Proof: Positive Examples

e Error analysis will be applied to only positive
examples and negative examples.

A positive example is a graph that has (’;) edges
connecting k£ nodes in all possible ways.

There are (Z) such graphs.

They all should elicit a true output from CLIQUE,, .
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The Proof: Negative Examples

e Color the nodes with k£ — 1 different colors and join by
an edge any two nodes that are colored differently.

e There are (k — 1)™ such graphs.

e They all should elicit a false output from CLIQUE, k.

Positive and Negative Examples with £ =5

A positive example A negative example
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The Proof: OR

Violations occur when |[X U Y| > M.

Such violations can be eliminated by using
CC(pluck(X U Y))

as the approximate OR of CC(X) and CC(Y).

OR makes on the positive and negative examples.

CC(XUY) is equivalent to the or of CC(X) and CC()).

e We now count the numbers of errors this approximate
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The Proof: OR (concluded)

e CC(pluck(X UY)) introduces a false positive if a
negative example makes both CC(X) and CC(Y) return
false but makes CC(pluck(X U Y)) return true.

e CC(pluck(X UY)) introduces a false negative if a
positive example makes either CC(&X’) or CC(Y) return
true but makes CC(pluck(X U Y)) return false.

e How many false positives and false negatives are
introduced by CC(pluck(X U Y))?
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The Number of False Positives
Lemma 80 CC(pluck(X U)Y)) introduces at most
p%l 27P(k—1)" false positives.
e Assume a plucking replaces the sunflower
{Z1,2>, ... ,Z,} with its core Z.
e A false positive is necessarily a coloring such that:

— There is a pair of identically colored nodes in each
petal Z; (and so both crude circuits return false).
— But the core contains distinctly colored nodes.
x This implies at least one node from each
same-color pair was plucked away.

e We now count the number of such colorings.

Proof of Lemma 80 (continued)
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Proof of Lemma 80 (continued)

e Color nodes V at random with k£ — 1 colors and let R(X)
denote the event that there are repeated colors in set X.

e Now prob[R(Z1) A--- N R(Zp) N —R(Z)] is at most

prob[R(Z1) A -+ A R(Z,)|~R(Z)

= [[problR(Z)~R(2)] < [[ problR(Z)]. (7)

— First equality holds because R(Z;) are independent
given —R(Z) as Z contains their only common nodes.

— Last inequality holds as the likelihood of repetitions
in Z; decreases given no repetitions in Z C Z,.
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Proof of Lemma 80 (continued)

e Consider two nodes in Z;.

e The probability that they have identical color is ﬁ

1251 £
e Now prob[R(Z;)] < % < 19(3)1 <3

e So the probability that a random coloring is a new false
positive is at most 277 by inequality (7).

e As there are (k — 1)™ different colorings, each plucking
introduces at most 27P(k — 1)" false positives.

The Number of False Negatives
Lemma 81 CC(pluck(X UY)) introduces no false negatives.

e Each plucking replaces a set in a crude circuit by a
subset.
e This makes the test less stringent.

— For each Y € X U )Y, there must exist at least one
X € pluck(X UY) such that X C Y.

- Soif Y € XUY is a clique, then pluck(X U Y) also

contains a clique in X.

e So plucking can only increase the number of accepted
graphs.
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Proof of Lemma 80 (concluded)
e Recall that [ XY UY | < 2M.
e Each plucking reduces the number of sets by p — 1.
e Hence at most z% pluckings occur in pluck(X U Y).

e At most
M
— 2Pk —-1)"
(k- )

false positives are introduced.

The Proof: AND

e The approximate AND of crude circuits CC(X') and
CC(Y) is

e We now count the numbers of errors this approximate
AND makes on the positive and negative examples.
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Proof of Lemma 82 (concluded)

The Proof: AND (concluded
( ) {X;UY;: X; € X)Y; €Y, |X;UY;| <} < M2

e The approximate AND introduces a false positive if a )
e Each plucking reduces the number of sets by p — 1.

negative example makes either CC(X) or CC()) return
false but makes the approximate AND return true. e Sopluck({X; UY;: X; € X,Y; € Y,|X; UY;| < £})

. ) .. involves < M?/(p — 1) pluckings.
e The approximate AND introduces a false negative if a HIVOIVES = /(p ) pluckings

positive example makes both CC(X) and CC()) return e Each plucking introduces at most 277 (k — 1)™ false
true but makes the approximate AND return false. positives by the proof of Lemma 80 (p. 566).
e How many false positives and false negatives are e The desired upper bound is

introduced by the approximate AND? [M2/(p )2 Pk — 1) < M227p(k _ 1y
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The Number of False Negatives
The Number of False Positives
Lemma 83 The approximate AND introduces at most
Lemma 82 The approximate AND introduces at most M2 (n—é—l

kfzq) false negatives.
M?27P(k — 1)" false positives.

e We follow the same three-step proof as before.
o CC({X,;UY, : X, € X,Y; € V}) introduces no false

e CC{X;UY;: X; € X,Y; € V}) introduces no false

positives.
. . negatives.
— If X; UY] is a clique, both X; and Y; must be o
cliques, making both CC(X’) and CC(Y) return true. — Suppose both CC(X) and CC(Y) accept a positive

example with a clique of size k.
e CC{X,;UY;: X, € X,Y; € Y,|X; UY;| </{}) introduces

T — The clique must contain an X; € X and a Y; € V.
no false positives for the same reason as above.

— As it contains X; UYj, the new circuit returns true.
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Proof of Lemma 83 (concluded)

o CC{X;UY;: X; € X,Y; € Y,|X; UYj| </{}) introduces

< M? (z:fj) false negatives.

— Deletion of set Z = X; UY; larger than £ introduces
false negatives which are cliques containing Z.

— There are (Z:‘lé‘) such cliques.

~ (gD < Goim) as 2] > ¢

— There are at most M? such Zs.

e Plucking introduces no false negatives.

The Proof (continued)

e The above two lemmas show that each approximation
step introduce “few” false positives and false negatives.

e We next show that the resulting crude circuit has “a
lot” of false positives or false negatives.
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Two Summarizing Lemmas
From Lemmas 80 (p. 566) and 82 (p. 574), we have:

Lemma 84 Fach approximation step introduces at most
M?27P(k — 1)" false positives.
From Lemmas 81 (p. 571) and 83 (p. 576), we have:

Lemma 85 Fach approximation step introduces at most

M? (z:fj) false negatives.

The Final Crude Circuit

Lemma 86 FEwvery final crude circuit either is identically
false—thus wrong on all positive examples—or outputs true
on at least half of the negative examples.

e Suppose it is not identically false.

e By construction, it accepts at least those graphs that
have a clique on some set X of nodes, with | X | < ¥,
which at n'/8 is less than k = n'/%.

e The proof of Lemma 80 (p. 566ff) shows that at least
half of the colorings assign different colors to nodes in X.

e So half of the negative examples have a clique in X and
are accepted.
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The Proof (continued)

1/4 1/8

e Recall the constants on p. 558: k=n"/* £ =n"/°,
p=n"%logn, M = (p— 1) < n(1/3m' % for large n.
e Suppose the final crude circuit is identically false.

— By Lemma 85 (p. 578), each approximation step

introduces at most M? (Z:ﬁ:i) false negatives.

— There are (Z) positive examples.
— The original crude circuit for CLIQUE, ; has at least
I 1 n—4 ¢ 1/8
R T
(:Zecn)

gates for large n.

P # NP Proved?

Razborov’s theorem says that there is a monotone
language in NP that has no polynomial monotone

circuits.

If we can prove that all monotone languages in P have
polynomial monotone circuits, then P # NP.

But Razborov proved in 1985 that some monotone
languages in P have no polynomial monotone circuits!
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The Proof (concluded)

e Suppose the final crude circuit is not identically false.
— Lemma 86 (p. 580) says that there are at least
(k — 1)™/2 false positives.
— By Lemma 84 (p. 578), each approximation step
introduces at most M227P(k — 1)™ false positives
— The original crude circuit for CLIQUE, ; has at least
(k—1)m/2 2@t
M22-p(k — 1) M?

1/8

> p(1/3)m

gates.

PSPACE and Games

Given a boolean expression ¢ in CNF with boolean
variables x1, s, ... ,Zy, is it true that
Jz1Vzs - Qrznd?

This is called quantified satisfiability or QSAT.

This problem is like a two-person game: 3 and V are the
two players.

We ask then is there a winning strategy for 37
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QsAT € PSPACE

1: QSAT(lengwz B Qn$n¢(x1, . ,xn)):
2: if n = 0 then
3: return ¢;
4: else
5. if @1 = 3 then
6: return QSAT(Q2z2 - QnZnd(0, 22, ... ,22)) V
QSAT(QQ{I}Q v annqb(l, To,... ,.’122));
7.  else
8: return QSAT(Q2z2 - - - Qnznd(0, 22, ... ,T2)) A
QSAT(QQI}Q v ann(b(l, To,... ,.’L’g));
9: end if
10: end if

Interactive Proof for Boolean Unsatisfiability

A 3sAT formula is a conjunction of disjunctions of at
most three literals.

We shall present an interactive proof for boolean
unsatisfiability.

For any unsatisfiable 3SAT formula ¢(z1,z2, ... ,Zy,),
there is an interactive proof for the fact that it is
unsatisfiable.

Therefore, coNP C IP.
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IP and PSPACE
e We next prove that coNP C IP.

e Shamir in 1990 proved that IP equals PSPACE using

similar ideas.

Theorem 87 [P = PSPACE.
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Arithmetization of Boolean Formulas
The idea is to arithmetize the boolean formula.
e T — positive integer
e F—0
® I, > I;
o, >1—um;
oV — +
e N — X
o O(x1,%9,...,2Tpn) = P(x1,22,...,%,)
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The Arithmetic Version

e A boolean formula is transformed into a multivariate
polynomial ®.

It is easy to verify that ¢ is unsatisfiable if and only if

Z Z Z ‘P(xl,xm---,xn)zo.

z1=0,1 22=0,1 x,=0,1

But the above seems to require exponential time.

We turn to more intricate methods.
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Choosing the Field (concluded)

e By choosing a prime ¢ > 2"3™ and working modulo this
prime, proving unsatisfiability reduces to proving that

Z Z Z ®(z1,72,... ,7,) =0 mod g.

z1=0,1 22=0,1 z,=0,1

e Working under a finite field allows us to uniformly select
a random element in the field.

Choosing the Field
e Suppose ¢ has m clauses of length three each.

e Then ®(zq,zs2,...,2,) < 3™ for any truth assignment
(.’131,.1'2, Ce ,;Un).
e Because there are at most 2" truth assignments,

Z Z Z (D(xl)l‘Za'--axn)SQnsm-

z1=0,12z2=0,1 Tn,=0,1
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Binding Peggy
e Peggy has to find a sequence of polynomials that satisfy

a number of restrictions.

e The restrictions are imposed by Victor: After receiving
a polynomial from Peggy, Victor sets a new restriction
for the next polynomial in the sequence.

e These restrictions guarantee that if ¢ is unsatisfiable,
such a sequence can always be found.

e However, if ¢ is not unsatisfiable, any Peggy has only a
small probability of finding such a sequence.

— The probability is taken over Victor’s coin tosses.
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The Algorithm

1: Peggy and Victor both arithmetize ¢ to obtain ®;
2: Peggy picks a prime ¢ > 2"3™ and sends it to Victor;
3: Victor rejects and stops if q is not a prime;
4: Victor sets vg to 0;
5. fori=1,2,...,ndo
6: Peggy calculates P (z) =
Zz,—+1=0,1 e an=0,1 B(r1,... y,Tic1, 2, Tidt 1y -« s Tn )}
7:  Peggy sends P;(z) to Victor;

8:  Victor rejects and stops if P;(0) + P;(1) # v;—1 mod q or
P; (2)’s degree exceeds m; {P;"(z) has at most m clauses.}
9:  Victor uniformly picks 7; € Z; and calculates v; = P} (r;);
10:  Victor sends 7; to Peggy;
11: end for

12: Victor accepts iff ®(r1,r2,...,7n) = vn mod g;
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