Pseudo-Polynomial-Time Algorithms

e Consider problems with inputs that consist of a
collection of integer parameters (TSP, KNAPSACK, etc.).

e An algorithm for such a problem whose running time is
a polynomial of the input length and the value (not
length) of the largest integer parameter is a
pseudo-polynomial-time algorithm.?

e On p. 517, we presented a pseudo-polynomial-time
algorithm for KNAPSACK that runs in time O(n?V).

e How about TSP (D), another NP-complete problem?

2Garey and Johnson (1978).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 520

Polynomial-Time Approximation Scheme
e Algorithm M is a polynomial-time approximation
scheme (PTAS) for a problem if:
— For each € > 0 and instance z of the problem, M
runs in time polynomial (depending on €) in |z |.
— M is an e-approximation algorithm for every e > 0.
e A polynomial-time approximation scheme is fully
polynomial (FPTAS) if the running time depends
polynomially on |z | and 1/e.
— Maybe the best result for a “hard” problem.

— For instance, KNAPSACK is fully polynomial with a
running time of O(n®/¢) (p. 516).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 522

No Pseudo-Polynomial-Time Algorithms for TSP (D)

e By definition, a pseudo-polynomial-time algorithm
becomes polynomial-time if each integer parameter is
limited to having length polynomial in the input length.

e Corollary 42 (p. 299) showed that HAMILTONIAN PATH is
reducible to TsP (D) with weights 1 and 2.

e As HAMILTONIAN PATH is NP-complete, TSP (D) cannot
have pseudo-polynomial-time algorithms unless P = NP.

e TSP (D) is said to be strongly NP-hard.

e Many weighted versions of NP-complete problems are
strongly NP-hard.

PTAS and Approximation Threshold

e If a problem has a PTAS, then its approximation
threshold is 0.

e If the approximation threshold of a problem is greater
than 0, then it does not have a PTAS.

e From p. 513, NODE COVER, MAXSAT, TSP, and
INDEPENDENT SET do not have a PTAS.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 523

Square of G The Proof (concluded)

e Let G = (V, E) be an undirected graph e Suppose G? has an independent set I? of size k2.

e G2 has nodes {(v1,v2) : v1,v2 € V} and edges o {u:dv €V (u,v) € I?} is an independent set of G.

:Ju €V (u,v) € I%} i ind dent set of G.
(), (0,0)]: (w= v A (o] € B)V [w,0] € B}, e {v:3Ju (u,v) } is an independent set o

e One of them has size > k by the pigeonhole principle.

)
,'.
A‘\‘

{ 2
0%

N

L/
ol
‘V
o

\
.%‘,
%

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 524 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 526

Independent Sets of G and G?

Lemma 74 G(V, E) has an independent set of size k if and
only if G? has an independent set of size k*.

Approximability of INDEPENDENT SET

The approximation threshold of the maximum independent

set is either zero or one.?

S G h ind dent set I C V of size k. . L L
¢ Juppose as an mdepencent set L X v o size Theorem 75 If there is a polynomial-time e-approximation

e {(u,v) : u,v € I} is an independent set of size k2 of G2. algorithm for INDEPENDENT SET for any 0 < € < 1, then
there is a polynomial-time approximation scheme.

w wd Ay
1 . . .
e Let G be a graph with a maximum independent set of
2 size k.
e Suppose there is an O(nt)-time e-approximation
3

algorithm for INDEPENDENT SET.

2Tt is in fact one!

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 525 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 527

The Proof (continued) C t
omments

e By Lemma 74 (p. 525), the maximum independent set of

5 . 9 e INDEPENDENT SET and NODE COVER are reducible to
G” has size k°.
each other (Corollary 40, p. 281).

e Apply the algorithm to G2. o
e NODE COVER has an approximation threshold at most

e The running time is O(n%). 0.5 (p- 500).

e The resulting independent set has size > (1 — €) k2. e But INDEPENDENT SET is unapproximable.

e By the construction in Lemma 74 (p. 525), we can e INDEPENDENT SET limited to graphs with degree < k is
obtain an independent set of size > \/m for G. called k-DEGREE INDEPENDENT SET.

e Hence there is a (1 — /T — ¢)-approximation algorithm e k-DEGREE INDEPENDENT SET is approximable.

for INDEPENDENT SET.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 528 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 530

The Proof (concluded)

e In general, we can apply the algorithm to G?' to obtain

an (1 — (1 —¢)2")-approximation algorithm for A k/(1 + k)-Approximation Algorithm
INDEPENDENT SET. 1 [=0
R 2: while V # () do
* The running time is n* .2 3: Delete an arbitrary node v from V;
e Now pick £ = [log %1- 4: Delete nodes incident with v from F;
 log(1—¢) 5 Add v to I

e The running time becomes n'los(i—<") 6: end while
e It is an ¢/-approximation algorithm for INDEPENDENT 7: return I;

SET.

2Tt is not fully polynomial.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 529 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 531

Analysis

I is an independent set.
At most £+ 1 nodes are deleted in Step 4.
So [I|>|V]|/(k+1).

e The approximation ratio is at least
\VI/(k+1) 1
|V | k+1
k
= 1-—.
k+1

So the approximation threshold is < k/(k + 1).

e The maximum independent set has at most | V' | nodes.

Sparsity

e Sparse languages are languages with polynomially
bounded density functions.

e Dense languages are languages with superpolynomial
density functions.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Density®
The density of language L C X* is defined as
densp(n) = [{z € L:|z| < n}|.

o If L ={0,1}*, then densg(n) = 2"*! — 1.

e For a unary language L C {0}*,

densp(n) <n+ 1.
n

—
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).

e So the density function grows at most exponentially.

Self-Reducibility for SAT

e An algorithm exploits self~-reducibility if it reduces the
problem to the same problem with a smaller size.

e Let ¢ be a boolean expression in n variables
L1,L2,--- ,Tnp-
e t € {0,1}7 is a partial truth assignment for

L1,L2y+.. ,Tj.

e ¢[t] denotes the expression after substituting the truth
values of ¢ for x1,z2,...,2);| in ¢.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 534

Page 535

1
2
3:
4
5

We call the algorithm below with empty ¢.
. if [t| = n then

: end if

The above algorithm runs in exponential time.

An Algorithm for SAT with Self-Reduction

return ¢[t];
else
return ¢[t0] V ¢[t1l];

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 536

Theorem 76 If a unary language U C {0}* is
NP-complete, then P = NP.

NP-Completeness and Density®

Suppose there is a reduction R from SAT to U.

We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ¢
with n variables if it is satisfiable.

Specifically, we use R to prune the exponential-time
exhaustive search on p. 536.

The trick is to keep the already discovered results ¢[¢]
in a table H.

2Berman (1978).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 537

1: if |t| = n then
2: return ¢[t];
3: else
4: if (R(4[t]),v) is in table H then
5: return v;
6: else
7 if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
8: Insert (R(¢[t]),1) into H;
9: return “satisfiable”;
10: else
11: Insert (R(¢[t]),0) into H;
12: return “unsatisfiable”;
13: end if
14: end if
15: end if
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 538
The Proof (continued)
e Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t'] must be both satisfiable or unsatisfiable.
e R(¢[t]) has polynomial length < p(n) because R runs in
log space.
e As R maps to unary numbers, there are only
polynomially many p(n) values of R(¢[t]).
e How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 539

The Proof (continued)

o A search of the table takes time O(p(n)) in the random
access memory model.

e The running time is O(Mp(n)), where M is the total
number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of
depth at most n.

3rd step: Delete all ¢'s
at most » ancestors
(prefixes) from
further consideration

2nd step: Select any
bottom undeleted
invocation ¢ and add
itto T

\ Ist step: Delete
leaves; (M —1)/2

nonleaves remaining

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 540

The Proof (continued)
e There is a set T = {#1,t2,... } of invocations (partial
truth assignments, i.e.) such that:
= T > (M —1)/(2n).
— All invocations in T are recursive (nonleaves).

— None of the elements of T is a prefix of another.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 542

The Proof (continued)

e All invocations ¢t € T have different R($[t]) values.
— None of s,t € T is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of T implies that there are at least
(M —1)/(2n) different R(4[t]) values in the table.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 541

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 543

The Proof (concluded)

e We already know that there are at most p(n) such

values.
e Hence (M —1)/(2n) < p(n).
e Thus M < 2np(n) + 1.
e The running time is therefore O(Mp(n)) = O(np?(n)).

e We comment that this theorem holds for any sparse
language, not just unary ones.?

@Mahaney (1980).

Sunflowers
e Fix pe Z* and £ € ZT.

e A sunflower is a family of p sets {Py, Ps,... , Py},
called petals, each of cardinality at most £.

e All pairs of sets in the family must have the same
intersection (called the core of the sunflower).

oy
wp

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 544

NP-Completeness and Density

Theorem 77 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,
now, we want to make sure a formula is unsatisfiable.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 545

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 546
A Sample Sunflower
{{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1’ 2) 12’ 13}’ {1’ 2) 8) 10}) {1) 2’ 4’ 7}}
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 547

The Erd6s-Rado Lemma
Lemma 78 Let Z be a family of more than M = (p — 1)%¢! The Proof of the Erdés-Rado Lemma (concluded)

nonempty sets, each of cardinality £ or less. Then Z must e (continued)
contain a sunflower.
fi — Z' contains a sunflower by induction, say

e Induction on 4.

{P1,Ps,...,Pp}.
e For £ =1, p different singletons form a sunflower (with
an empty core). — Now,
e Suppose £ > 1. {Pru{d}, R U{d},... ,Pu{d}}
e Consider a mazimal subset D C Z of disjoint sets. is a sunflower in Z.
— Every set in Z — D intersects some set in D.
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 548 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 550
The Proof of the Erdés-Rado Lemma (continued)
e Suppose D contains at least p sets. Comments on the Erdés-Rado Lemma
— D constitutes a sunflower with an empty core. e A family of more than M sets must contain a sunflower.
e Suppose D contains fewer than p sets. e Plucking a sunflower entails replacing the sets in the
— Let D be the union of all sets in D. sunflower by its core.
— |D| < (p—1)¢ and D intersects every set in Z. e By repeatedly finding a sunflower and plucking it, we
— There is a d € D that intersects more than can reduce a family with more than M sets to a family
(pi/f_l)e =(p—1)1(—1)! sets in Z. with at most M sets.
— Consider 2'={Z —{d}: Z € Z,d € Z}. e If Z is a family of sets, the above result is denoted by
— 2’ has more than M’ = (p — 1)*"1(£ — 1)! sets. pluck(Z).

M’ is just M with £ decreased by one.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 549 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 551

An Example of Plucking

e Recall the sunflower on p. 547:

z = {{1a2a3)5}a{1a236’9}a{0)1a2y11};
{1, 2,12, 13}, {1, 2,8, 10}, {1, 2,4, 7}}

e Then

pluck(2) = {{1,2}}.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 552

