Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the *value* (not length) of the largest integer parameter is a pseudo-polynomial-time algorithm.^a
- On p. 517, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O(n^2V)$.
- How about TSP (D), another NP-complete problem?

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 520

No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having *length* polynomial in the input length.
- Corollary 42 (p. 299) showed that HAMILTONIAN PATH is reducible to TSP (D) with weights 1 and 2.
- As Hamiltonian path is NP-complete, TSP (D) cannot have pseudo-polynomial-time algorithms unless P = NP.
- TSP (D) is said to be **strongly NP-hard**.
- Many weighted versions of NP-complete problems are strongly NP-hard.

Polynomial-Time Approximation Scheme

- Algorithm *M* is a **polynomial-time approximation scheme** (**PTAS**) for a problem if:
 - For each $\epsilon > 0$ and instance x of the problem, M runs in time polynomial (depending on ϵ) in |x|.
 - M is an ϵ -approximation algorithm for every $\epsilon > 0$.
- A polynomial-time approximation scheme is **fully polynomial** (**FPTAS**) if the running time depends polynomially on |x| and $1/\epsilon$.
 - Maybe the best result for a "hard" problem.
 - For instance, KNAPSACK is fully polynomial with a running time of $O(n^3/\epsilon)$ (p. 516).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 522

PTAS and Approximation Threshold

- If a problem has a PTAS, then its approximation threshold is 0.
- If the approximation threshold of a problem is greater than 0, then it does not have a PTAS.
- From p. 513, NODE COVER, MAXSAT, TSP, and INDEPENDENT SET do not have a PTAS.

^aGarey and Johnson (1978).

Square of G

- Let G = (V, E) be an undirected graph.
- G^2 has nodes $\{(v_1, v_2) : v_1, v_2 \in V\}$ and edges

 $\{[(u, u'), (v, v')] : (u = v \land [u', v'] \in E) \lor [u, v] \in E\}.$

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 524

Independent Sets of G and G^2

Lemma 74 G(V,E) has an independent set of size k if and only if G^2 has an independent set of size k^2 .

- Suppose G has an independent set $I \subseteq V$ of size k.
- $\{(u,v): u,v\in I\}$ is an independent set of size k^2 of G^2 .

The Proof (concluded)

- Suppose G^2 has an independent set I^2 of size k^2 .
- $\{u: \exists v \in V (u,v) \in I^2\}$ is an independent set of G.
- $\{v: \exists u \in V (u,v) \in I^2\}$ is an independent set of G.
- One of them has size $\geq k$ by the pigeonhole principle.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 526

Approximability of INDEPENDENT SET

The approximation threshold of the maximum independent set is either zero or one.^a

Theorem 75 If there is a polynomial-time ϵ -approximation algorithm for INDEPENDENT SET for any $0 < \epsilon < 1$, then there is a polynomial-time approximation scheme.

- Let G be a graph with a maximum independent set of size k.
- Suppose there is an $O(n^i)$ -time ϵ -approximation algorithm for INDEPENDENT SET.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 525

^aIt is in fact one!

The Proof (continued)

- By Lemma 74 (p. 525), the maximum independent set of G^2 has size k^2 .
- Apply the algorithm to G^2 .
- The running time is $O(n^{2i})$.
- The resulting independent set has size $\geq (1 \epsilon) k^2$.
- By the construction in Lemma 74 (p. 525), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon)k^2}$ for G.
- Hence there is a $(1 \sqrt{1 \epsilon})$ -approximation algorithm for INDEPENDENT SET.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 528

The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $(1-(1-\epsilon)^{2^{-\ell}})$ -approximation algorithm for INDEPENDENT SET.
- The running time is $n^{2^{\ell_i}}$.a
- Now pick $\ell = \lceil \log \frac{\log(1-\epsilon)}{\log(1-\epsilon')} \rceil$.
- \bullet The running time becomes $n^{i\frac{\log(1-\epsilon)}{\log(1-\epsilon')}}.$
- It is an ϵ' -approximation algorithm for INDEPENDENT SET.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 40, p. 281).
- NODE COVER has an approximation threshold at most 0.5 (p. 500).
- But independent set is unapproximable.
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-Degree independent set.
- k-degree independent set is approximable.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 530

A k/(1+k)-Approximation Algorithm

1: $I := \emptyset$;

2: while $V \neq \emptyset$ do

3: Delete an arbitrary node v from V;

4: Delete nodes incident with v from E;

5: Add v to I;

6: end while

7: return I;

^aIt is not fully polynomial.

Analysis

- \bullet I is an independent set.
- At most k+1 nodes are deleted in Step 4.
- So $|I| \ge |V|/(k+1)$.
- ullet The maximum independent set has at most |V| nodes.
- The approximation ratio is at least

$$\frac{|V|/(k+1)}{|V|} = \frac{1}{k+1}$$
$$= 1 - \frac{k}{k+1}$$

• So the approximation threshold is $\leq k/(k+1)$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 532

$\mathsf{Density}^{\mathrm{a}}$

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0,1\}^*$, then $dens_L(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

$$\operatorname{dens}_L(n) \leq n+1.$$

- Because
$$L \subseteq \{\epsilon, 0, 00, \dots, \overbrace{00 \cdots 0}^{n}, \dots\}$$
.

Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 534

Self-Reducibility for SAT

- An algorithm exploits **self-reducibility** if it reduces the problem to the same problem with a smaller size.
- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n .
- $t \in \{0,1\}^j$ is a **partial** truth assignment for x_1, x_2, \dots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ .

@2003 F

^aBerman and Hartmanis (1977).

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

```
1: if |t| = n then

2: return \phi[t];

3: else

4: return \phi[t0] \lor \phi[t1];

5: end if
```

The above algorithm runs in exponential time.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 536

NP-Completeness and Density^a

Theorem 76 If a unary language $U \subseteq \{0\}^*$ is NP-complete, then P = NP.

- Suppose there is a reduction R from SAT to U.
- We shall use R to guide us in finding the truth assignment that satisfies a given boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 536.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

```
<sup>a</sup>Berman (1978).
```

```
1: if |t| = n then
     return \phi[t];
 3: else
      if (R(\phi[t]), v) is in table H then
        return v:
      else
6:
        if \phi[t0] = "satisfiable" or \phi[t1] = "satisfiable" then
7:
           Insert (R(\phi[t]), 1) into H;
8:
           return "satisfiable":
9:
10:
         else
           Insert (R(\phi[t]), 0) into H;
11:
           return "unsatisfiable";
12:
        end if
13:
      end if
14:
15: end if
```

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 538

The Proof (continued)

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.

The Proof (continued)

- A search of the table takes time O(p(n)) in the random access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most n.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 540

The Proof (continued)

- There is a set $T = \{t_1, t_2, ...\}$ of invocations (partial truth assignments, i.e.) such that:
 - $-|T| \ge (M-1)/(2n).$
 - All invocations in T are **recursive** (nonleaves).
 - None of the elements of T is a prefix of another.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 542

The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $s, t \in T$ is a prefix of another.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least (M-1)/(2n) different $R(\phi[t])$ values in the table.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 541

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $(M-1)/(2n) \le p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.^a

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 544

NP-Completeness and Density

Theorem 77 (Fortung (1979)) If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then P = NP.

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.

Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets $\{P_1, P_2, \dots, P_p\}$, called **petals**, each of cardinality at most ℓ .
- All pairs of sets in the family must have the same intersection (called the **core** of the sunflower).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 546

A Sample Sunflower

$$\{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\},$$

 $\{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}$

^aMahaney (1980).

The Frdős-Rado Lemma

Lemma 78 Let \mathcal{Z} be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower.

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 548

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - $-\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let D be the union of all sets in \mathcal{D} .
 - $-|D| \leq (p-1)\ell$ and D intersects every set in \mathcal{Z} .
 - There is a $d \in D$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)!$ sets in \mathcal{Z} .
 - Consider $\mathcal{Z}' = \{Z \{d\} : Z \in \mathcal{Z}, d \in Z\}.$
 - $-\mathcal{Z}'$ has more than $M'=(p-1)^{\ell-1}(\ell-1)!$ sets.
 - -M' is just M with ℓ decreased by one.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - $-\mathcal{Z}'$ contains a sunflower by induction, say

$$\{P_1,P_2,\ldots,P_p\}.$$

- Now,

$$\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}\$$

is a sunflower in \mathcal{Z} .

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 550

Page 551

Comments on the Frdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower entails replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

An Example of Plucking

• Recall the sunflower on p. 547:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\},$$

 $\{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$

• Then

$$pluck(\mathcal{Z}) = \{\{1, 2\}\}.$$

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 552