Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
 - We are looking for theoretically *guaranteed* bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming $NP \neq P$)?
- Are there NP problems that cannot be approximated at all (assuming $NP \neq P$)?

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 491

Some Definitions

- Given an optimization problem, each problem instance x has a set of feasible solutions F(x).
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$.
- The **optimum cost** is $OPT(x) = \min_{s \in F(x)} c(s)$ for a minimization problem.
- It is $OPT(x) = \max_{s \in F(x)} c(s)$ for a maximization problem.

Optimization Problem and Threshold Language

- Given a maximization (minimization) problem, its decision version, the **threshold language**, asks if the optimal cost is at least (at most, resp.) a given threshold.
- If the decision version is hard, the optimization problem cannot be easy.
 - Otherwise, we can solve the optimization problem first and then do a simple test.
- If the optimization problem is hard, its decision version is not expected to be easy.
 - Otherwise, we can often do a binary search to bracket the optimal cost.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 493

Approximation Algorithms

- \bullet Let algorithm M on x returns a feasible solution.
- M is an ϵ -approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$\frac{|c(M(x)) - \text{OPT}(x)|}{\max(\text{OPT}(x), c(M(x)))} \le \epsilon.$$

- For a minimization problem,

$$\frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \le \epsilon.$$

- For a maximization problem,

$$\frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \le \epsilon.$$

Lower and Upper Bounds

• For a minimization problem,

$$\min_{s \in F(x)} c(s) \le c(M(x)) \le \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}.$$

- So approximation ratio $\frac{\min_{s \in F(x)} c(s)}{c(M(x))} \ge 1 \epsilon$.
- For a maximization problem,

$$(1 - \epsilon) \times \max_{s \in F(x)} c(s) \le c(M(x)) \le \max_{s \in F(x)} c(s).$$

- So approximation ratio $\frac{c(M(x))}{\max_{s \in F(x)} c(s)} \ge 1 \epsilon$.
- The above are alternative definitions of ϵ -approximation algorithms.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 495

Range Bounds

- ϵ takes values between 0 and 1.
- For maximization problems, an ϵ -approximation algorithm returns solutions within $[(1 \epsilon) \times \text{OPT}, \text{OPT}]$.
- For minimization problems, an ϵ -approximation algorithm returns solutions within [OPT, $\frac{OPT}{1-\epsilon}$].
- For each NP-complete optimization problem, we shall be interested in determining the *smallest* ϵ for which there is a polynomial-time ϵ -approximation algorithm.
- Sometimes ϵ has no minimum value.

Approximation Thresholds

- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ -approximation algorithm.
- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If P = NP, then all optimization problems in NP have approximation threshold 0.
- So we assume $P \neq NP$ for the rest of the discussion.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 497

NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph G = (V, E) such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce approximation ratio $\frac{c(M(x))}{\text{OPT}(x)} = \Theta(\log n)$.
- It is not an ϵ -approximation algorithm for any $\epsilon < 1$.

A 0.5-Approximation Algorithm

1: $C := \emptyset$;

2: while $E \neq \emptyset$ do

3: Delete an arbitrary edge [u, v] from E;

4: Delete edges incident with u and v from E;

5: Add u and v to C; {Add 2 nodes to C each time.}

6: end while

7: return C;

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 499

Analysis

- C contains |C|/2 edges.
- No two edges of C share a node.
- Any node cover must contain at least one node from each of these edges.
- This means that $OPT(G) \ge |C|/2$.
- So

$$\frac{\mathrm{OPT}(G)}{|C|} \ge 1/2.$$

• The approximation threshold is < 0.5.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 501

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 263).
- Consider the more general k-MAXGSAT for constant k.
 - Given a set of boolean expressions $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\}$ in n variables.
 - Each ϕ_i is a general expression involving k variables.
 - k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 500

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

A Probabilistic Interpretation of an Algorithm

- Each ϕ_i involves exactly k variables and is satisfied by t_i of the 2^k truth assignments.
- A random truth assignment $\in \{0,1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = t_i/2^k$.
 - $-p(\phi_i)$ is easy to calculate for a $k=O(\log n)$.
- Hence a random truth assignment satisfies an expected number

$$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

of expressions ϕ_i .

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 503

Page 504

The Search Procedure

• Clearly

$$p(\Phi) = rac{1}{2} \left\{ \left. p(\Phi[\, x_1 = \mathtt{true} \,]) + p(\Phi[\, x_1 = \mathtt{false} \,]) \,
ight\}.$$

- Select the $t_1 \in \{\text{true}, \text{false}\}\ \text{such that}\ p(\Phi[x_1 = t_1])\ \text{is}$ the larger one.
- Note that $p(\Phi[x_1 = t_1]) > p(\Phi)$.
- Repeat with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i either true or false.

The Search Procedure (concluded)

• By our hill-climbing procedure,

$$p(\Phi[x_1 = t_1, x_2 = t_2, \dots, x_n = t_n])$$

$$\geq \cdots$$

$$\geq p(\Phi[x_1 = t_1, x_2 = t_2])$$

$$\geq p(\Phi[x_1 = t_1])$$

$$\geq p(\Phi).$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n) .
- The algorithm is deterministic.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 505

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_{i} p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$

- The heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - 2^{-k}$.

Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses.
- Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.^a
- If the clauses have k distinct literals, $p(\phi_i) = 1 2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.
 - This is the best possible for $k \geq 3$ unless P = NP.

^aJohnson (1974).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 507

MAX CUT Revisited

- The NP-complete MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V S) so that there are as many edges as possible between S and V S (p. 284).
- Local search starts from a feasible solution and performs "local" improvements until none are possible.

A 0.5-Approximation Algorithm for MAX CUT

- 1: $S := \emptyset$;
- 2: while $\exists v \in V$ whose switching sides results in a larger cut do
- 3: $S := S \cup \{v\};$
- 4: end while
- 5: $\mathbf{return} S$;
- A 0.12-approximation algorithm exists.^a
- 0.059-approximation algorithms do not exist unless NP = ZPP.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 509

^aGoemans and Williamson (1995).

Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$ and the optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j .
- Because no migration of nodes can improve the algorithm's cut, for each node in V_1 , its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
- Considering all nodes in V_1 together, we have $2e_{11} + e_{12} \le e_{13} + e_{14}$, which implies

$$e_{12} \le e_{13} + e_{14}$$
.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 511

Analysis (concluded)

• Similarly,

$$e_{12} \leq e_{23} + e_{24}$$

$$e_{34} \leq e_{23} + e_{13}$$

$$e_{34} \leq e_{14} + e_{24}$$

• Adding all four inequalities, dividing both sides by 2, and adding the inequality

$$e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$$
, we obtain

$$e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$$

• The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
 - KNAPSACK has a threshold of 0.
 - But NODE COVER and MAXSAT have a threshold larger than 0.
- The situation is maximally pessimistic for TSP: It cannot be approximated unless P = NP.
 - The approximation threshold of TSP is 1.
 - * The threshold is 1/3 if the TSP satisfies the triangular inequality.
 - The same holds for INDEPENDENT SET.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 513

Unapproximability of TSPa

Theorem 72 The approximation threshold of TSP is 1 unless P = NP.

- Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm for the NP-complete HAMILTONIAN CYCLE.
- Given any graph G = (V, E), construct a TSP with |V| cities with distances

$$d_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E \\ \frac{|V|}{1-\epsilon}, & \text{otherwise} \end{cases}$$

^aSahni and Gonzales (1976).

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost |V| is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{1-\epsilon}$.
 - Because the algorithm is ϵ -approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
 - The optimum tour has a cost exceeding |V|.
 - Hence ${\cal G}$ has no Hamiltonian cycles.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 515

KNAPSACK Has an Approximation Threshold of Zero^a

Theorem 73 For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK.

- We have n weights w_1, w_2, \ldots, w_n , a weight limit W, and n values v_1, v_2, \ldots, v_n .
- We must find an $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is the largest possible.
- Let

$$V = \max\{v_1, v_2, \dots, v_n\}.$$

The Proof (continued)

- For $0 \le i \le n$ and $0 \le v \le nV$, define W(i, v) to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v.
- Start with $W(0, v) = \infty$ for all v.
- Then

$$W(i+1,v) = \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}.$$

- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O(n^2V)$, not polynomial time.
- Key idea: Limit the number of precision bits.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 517

The Proof (continued)

• Given the instance $x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n)$, we define the approximate instance

$$x' = (w_1, \ldots, w_n, W, v'_1, \ldots, v'_n).$$

where

$$v_i'=2^b\left|\frac{v_i}{2^b}\right|$$
.

- Solving x' takes time $O(n^2V/2^b)$.
- The solution S' is close to the optimum solution S:

$$\sum_{i \in S} v_i \ge \sum_{i \in S'} v_i \ge \sum_{i \in S'} v_i' \ge \sum_{i \in S} v_i' \ge \sum_{i \in S} (v_i - 2^b) \ge \sum_{i \in S} v_i - n2^b.$$

^aIbarra and Kim (1975).

The Proof (concluded)

• Hence

$$\sum_{i \in S'} v_i \ge \sum_{i \in S} v_i - n2^b.$$

- Because V is a lower bound on OPT (if, without loss of generality, $w_i \leq W$), the relative deviation from the optimum is at most $n2^b/V$.
- By truncating the last $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$ bits of the values, the algorithm becomes ϵ -approximate.
- The running time is then $O(n^2V/b) = O(n^3/\epsilon)$, a polynomial in n and ϵ .

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 519