Tackling Intractable Problems
e Many important problems are NP-complete or worse.
e Heuristics have been developed to attack them.
e They are approximation algorithms.

e How good are the approximations?
— We are looking for theoretically guaranteed bounds,
not “empirical” bounds.
e Are there NP problems that cannot be approximated
well (assuming NP # P)?

e Are there NP problems that cannot be approximated at
all (assuming NP # P)?
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Some Definitions

e Given an optimization problem, each problem
instance z has a set of feasible solutions F(z).

e Each feasible solution s € F(z) has a cost c(s) € Z*.

e The optimum cost is OPT(z) = min,cp(,) c(s) for a

minimization problem.

o It is OPT(z) = max,c p(s) c(s) for a maximization
problem.

Optimization Problem and Threshold Language

e Given a maximization (minimization) problem, its
decision version, the threshold language, asks if the
optimal cost is at least (at most, resp.) a given
threshold.

e If the decision version is hard, the optimization problem
cannot be easy.
— Otherwise, we can solve the optimization problem
first and then do a simple test.
e If the optimization problem is hard, its decision version
is not expected to be easy.

— Otherwise, we can often do a binary search to
bracket the optimal cost.
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Approximation Algorithms
e Let algorithm M on z returns a feasible solution.

e M is an e-approximation algorithm, where € > 0, if
for all z,
e(M(2)) —opr(@)| _
€.
max(oPT(z),c(M(x))) —

— For a minimization problem,

o(M(2)) — min,e pe) o{s)
(M (@) =€

— For a maximization problem,

maxe (o) o(s) — c(M(2))
maXee £ (a) o(3)

<e.
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Lower and Upper Bounds

e For a minimization problem,

. min,e p(z) c(s)
< c(M < ——— =
sénﬁ}g:) C(S) - C( (-’E)) - 1—c¢

_ . . . minsep(m) C(S) _
So approximation ratio —iey 2 1—e.

e For a maximization problem,

(1—€) x max c(s) <ce(M(z)) < max c(s).

SEF(x) SEF(z)

(M) 51

— So approximation ratio s e (m) €3 2

e The above are alternative definitions of e-approximation
algorithms.
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Range Bounds

€ takes values between 0 and 1.

e For maximization problems, an e-approximation
algorithm returns solutions within [(1 — €) X OPT, OPT].

e For minimization problems, an e-approximation

algorithm returns solutions within [opT, 2% 1.

e For each NP-complete optimization problem, we shall be
interested in determining the smallest € for which there

is a polynomial-time e-approximation algorithm.

e Sometimes € has no minimum value.

Approximation Thresholds

e The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time
e-approximation algorithm.

e The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

e If P = NP, then all optimization problems in NP have
approximation threshold 0.

e So we assume P # NP for the rest of the discussion.
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NODE COVER

e NODE COVER seeks the smallest C' C V in graph
G = (V, E) such that for each edge in F, at least one of
its endpoints is in C.

e A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

e This turns out to produce approximation ratio
AM@) — (logn).

OPT(z)

e It is not an e-approximation algorithm for any e < 1.
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A 0.5-Approximation Algorithm

1: C:=0;
2. while E # 0 do
3:  Delete an arbitrary edge [u,v] from E;
4:  Delete edges incident with » and v from FE;
5. Add u and v to C; {Add 2 nodes to C each time.}
6: end while
7: return C|
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Analysis Maximum Satisfiability

o C contains |C|/2 edges. e Given a set of clauses, MAXSAT seeks the truth
e No two edges of C share a node. assignment that satisfies the most.
e Any node cover must contain at least one node from e MAX2SAT is already NP-complete (p. 263).

each of these edges. e Consider the more general k-MAXGSAT for constant k.

e This means that oPT(G) > |C|/2. — Given a set of boolean expressions
e So ® = {¢1,02,...,bm} in n variables.
w 12 — Each ¢; is a general expression involving k variables.
(o1 -~ — k-MAXGSAT seeks the truth assignment that satisfies
e The approximation threshold is < 0.5. the most expressions.
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A Probabilistic Interpretation of an Algorithm The Search Procedure (concluded)
e Each ¢; involves exactly k variables and is satisfied by ¢; e By our hill-climbing procedure,

of the 2* truth assignments.

) . . p(@[wlztl,xgztg,...,xn:tn])

e A random truth assignment € {0, 1}" satisfies ¢; with S

probability p(¢;) = t;/2*. =

— p(¢;) is easy to calculate for a k = O(logn). z pl@la =tz =1])

, ‘ > p(®[z1=t])

e Hence a random truth assignment satisfies an expected

number = p(®).

U e So at least p(®) expressions are satisfied by truth
p(@) = p(¢:) .
p assignment (t1,t2,...,t,).
of expressions ¢;. e The algorithm is deterministic.
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The Search Procedure Approximation Analysis
e Clearly e The optimum is at most the number of satisfiable
. ¢i—i.e., those with p(¢;) > 0.
p(®) = 2 {p(®[21 = true]) + p(2[z1 = false]) }. e Hence the ratio of algorithm’s output vs. the optimum is

e Seclect the t; € {true, false} such that p(®[z; =t1]) is > p(®) _ > p(bi) > min p(es).

the larger one. Ypen>0l  Dp@nsol  p(6:)>0
e Note that p(®[z; =t1]) > p(®). e The heuristic is a polynomial-time e-approximation
e Repeat with expression ®[x; = #; | until all variables z; algorithm with € = 1 — ming(y,)50 P(¢%)-

have been given truth values ¢; and all ¢; either true or e Because p(¢;) > 27k the heuristic is a polynomial-time

false. e-approximation algorithm with e =1 — 27,
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Back to MAXSAT

A 0.5-Approximation Algorithm for MAX cUT
e In MAXSAT, the ¢;’s are clauses.

1: S:=0;
e Hence p(¢;) > 1/2, which happens when ¢; contains a 2: while dv € V whose switching sides results in a larger
single literal. cut do
3: S:=SuU {’U};

e And the heuristic becomes a polynomial-time
4: end while

e-approximation algorithm with e = 1/2.2
5: return S

e If the clauses have k distinct literals, p(¢;) =1 — 2k,
e A 0.12-approximation algorithm exists.?
e And the heuristic becomes a polynomial-time
e 0.059-approximation algorithms do not exist unless

NP =7PP.

aGoemans and Williamson (1995).

e-approximation algorithm with e = 2%,

— This is the best possible for £ > 3 unless P = NP.

2Johnson (1974).
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Analysis

/ Optimal cut

MAX CUT Revisited

e The NP-complete MAX cUT seeks to partition the nodes
of graph G = (V, E) into (S,V — S) so that there are as
many edges as possible between S and V — S (p. 284). e

€
e Local search starts from a feasible solution and o /
Heuristic cut

performs “local” improvements until none are possible.
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Analysis (continued)

e Partition V = V; U V5 U V3 U V4, where our algorithm
returns (V3 U Vo, V3 U Vy) and the optimum cut is
(ViU Vs, Va UVy).

e Let e;; be the number of edges between V; and V.

e Because no migration of nodes can improve the
algorithm’s cut, for each node in V7, its edges to V3 U V5
are outnumbered by those to V3 U Vj.

o Considering all nodes in V; together, we have
2e11 + e12 < e13 + e14, which implies

e12 < e13 + ea.

Approximability, Unapproximability, and Between
® KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.
— KNAPSACK has a threshold of 0.
— But NODE COVER and MAXSAT have a threshold
larger than 0.
e The situation is maximally pessimistic for TSP: It
cannot be approximated unless P = NP.

— The approximation threshold of TsP is 1.
% The threshold is 1/3 if the TSP satisfies the
triangular inequality.

— The same holds for INDEPENDENT SET.
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Analysis (concluded)

e Similarly,

er2 < ez3tey
ey < ex3tes
ess < elsten

e Adding all four inequalities, dividing both sides by 2,
and adding the inequality

e14 + €23 < €14 + €23 + €13 + €24, We obtain
e12 + €34 + €14 + €23 < 2(e13 + e14 + €23 + €24).

e The above says our solution is at least half the optimum.

Unapproximability of Tsp?

Theorem 72 The approximation threshold of TSP is 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm for the
NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, E), construct a TSP with |V|
cities with distances

1, if{ijleE
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dij = \4 .
1—¢, otherwise
2Sahni and Gonzales (1976).
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The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost |V| is returned.

— This tour must be a Hamiltonian cycle.

e Suppose a tour with at least one edge of length {L_L is

returned.

V]
1—€-

The total length of this tour is >

— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

The optimum tour has a cost exceeding | V'|.

Hence G has no Hamiltonian cycles.
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KNAPSACK Has an Approximation Threshold of Zero?

Theorem 73 For any €, there is a polynomial-time
e-approximation algorithm for KNAPSACK.

e We have n weights wy,ws, ... ,w,, a weight limit W,

and n values vy,vg,... ,v,.

e We must find an S C {1,2,... ,n} such that
Yicswi < W and ), g v; is the largest possible.

e Let

V = max{vy,va,... ,Un}.

2Ibarra and Kim (1975).

The Proof (continued)

e For 0 <i<mnand0<v<nV,define W(i,v) to be the
minimum weight attainable by selecting some among the
1 first items, so that their value is exactly v.

e Start with W (0, v) = oo for all v.
e Then
Wi+ 1,v) = min{W(i,v), W(i,v — viy1) + Wit1}-
e Finally, pick the largest v such that W(n,v) < W.
e The running time is O(n2V), not polynomial time.

e Key idea: Limit the number of precision bits.
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The Proof (continued)
e Given the instance z = (wy, ..., Wn, W,v1, ... ,0,), we
define the approximate instance

/ ! !
= (w1,... ,wn, Wyvy,...,7,;,),

where

w3

e Solving z’ takes time O(n2V/2b).

e The solution S’ is close to the optimum solution S:

Zviz Zvi > ZvéZZ“;ZZ(W—?)ZZW—"?-

i€S €S’ €S’ i€S i€S i€S
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The Proof (concluded)

e Hence
b
Z V; Z Z’Uz‘ —n2°.
i€S’! i€S

e Because V is a lower bound on opT (if, without loss of
generality, w; < W), the relative deviation from the
optimum is at most n2°/V.

e By truncating the last b = [log, €] bits of the values,
the algorithm becomes e-approximate.

e The running time is then O(n2V/b) = O(n3/e¢), a
polynomial in n and e.
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