Conditions for Perfect Secrecy^a

- Consider a cryptosystem where:
 - The space of ciphertext is as large as that of keys.
 - Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
 - A key is chosen with uniform distribution.
 - For each plaintext x and ciphertext y, there exists a unique key e such that E(e, x) = y.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 441

The One-Time Pada

- 1: Alice generates a random string r as long as x;
- 2: Alice sends r to Bob over a secret channel;
- 3: Alice sends $r \oplus x$ to Bob over a public channel;
- 4: Bob receives y;
- 5: Bob recovers $x := y \oplus r$;

Analysis

- The one-time pad uses e = d = r.
- This is said to be a **private-key cryptosystem**.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 441).
- The random bit string must be new for each round of communication.
- The assumption of a private channel is problematic.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 443

Public-Key Cryptography^a

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send E(e,x) to Bob.
- Knowing d, Bob can recover x by D(d, E(e, x)) = x.
- The assumptions are complexity-theoretic.
 - It is computationally difficult to compute d from e.
 - It is computationally difficult to compute x from y without knowing d.

^aShannon (1949).

^aMauborgne and Vernam (1917), Shannon (1949); allegedly used for the hotline between Russia and U.S.

^aDiffie and Hellman (1976).

Complexity Issues

- Given y and x, it is easy to verify whether E(e, x) = y.
- A public-key cryptosystem in some sense is within NP.
- A necessary condition for the existence of secure public-key cryptosystems is therefore $P \neq NP$.
- But more is needed than $P \neq NP$.
- For example, it is not sufficient that *D* is hard to compute in the worst case.
- We want it to be hard to compute in "most" or "average" cases.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 445

One-Way Functions

- ullet We say that f is a **one-way function** if:
 - f is one-to-one.
 - For all $x \in \Sigma^*$, $|x|^{1/k} \le |f(x)| \le |x|^k$ for some k > 0.
 - -f can be computed in polynomial time.
 - $-f^{-1}$ cannot be computed in polynomial time.
 - * Exhaustive search works, but it is too slow.
- Even if $P \neq NP$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
 - Breaking a glass is a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x) = g^x \mod p$, where g is a primitive root of p.
 - Discrete logarithm is hard.^a
- The RSA^b function $f(x) = x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - Breaking the RSA function is hard.
- Modular squaring $f(x) = x^2 \mod pq$.
 - Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard—the quadratic residuacity assumption (QRA).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 447

The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - By Lemma 50 (p. 335),

$$\phi(pq) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = pq - p - q + 1.$$

• As $gcd(e, \phi(pq)) = 1$, there is a d such that

$$ed \equiv 1 \mod \phi(pq),$$

which can be found by the Euclidean algorithm.

 $^{^{\}rm a}{\rm But}$ it is in NP in some sense; Grollmann and Selman (1988).

^bRivest, Shamir, and Adleman (1978).

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes pq and the encryption key e, a number relatively prime to $\phi(pq)$.
 - The encryption function is $y = x^e \mod pq$.
- Knowing $\phi(pq)$, Bob calculates d such that $ed = 1 + k\phi(pq)$ for some $k \in \mathbb{Z}$.
 - The decryption function is $y^d \mod pq$.
 - It works because $y^d = x^{ed} = x^{1+k\phi(pq)} = x \mod pq$ by the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 342).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 449

The "Security" of the RSA Function

- Factoring pq or calculating d from (e, pq) seems hard.
 - See also p. 339.
- Breaking the last bit of RSA is as hard as breaking the RSA.^a
- Recall that problem A is "harder than" problem B if solving A results in solving B.
 - Factorization is "harder than" breaking the RSA.
 - Calculating Euler's phi function is "harder than" breaking the RSA.
- Recommended RSA key sizes: 1024 bits up to 2010, 2048 bits up to 2030, and 3072 bits up to 2031 and beyond.

The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob possessing the same key (see p. 443).
- How can they agree on the same secret key when the channel is insecure?
- This is called the secret-key agreement problem.
- It was solved by Diffie and Hellman (1976) using one-way functions.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 451

The Diffie-Hellman Secret-Key Agreement Protocol

- 1: Alice and Bob agree on a large prime p and a primitive root g of p; $\{p \text{ and } g \text{ are public.}\}$
- 2: Alice chooses a large number a at random;
- 3: Alice computes $\alpha = g^a \mod p$;
- 4: Bob chooses a large number b at random;
- 5: Bob computes $\beta = g^b \mod p$;
- 6: Alice sends α to Bob, and Bob sends β to Alice;
- 7: Alice computes her key $\beta^a \mod p$;
- 8: Bob computes his key $\alpha^b \mod p$;

^aAlexi, Chor, Goldreich, and Schnorr (1988).

Analysis

• The keys computed by Alice and Bob are identical:

$$\beta^a = g^{ba} = g^{ab} = \alpha^b \bmod p.$$

- To compute the common key from p, g, α, β is known as the **Diffie-Hellman problem**.
- It is conjectured to be hard.
- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
 - Because a and b can then be obtained by Eve.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 453

A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- At around the same time (or earlier) in Britain, the RSA public-key cryptosystem was invented first before the Diffie-Hellman secret-key agreement scheme was.
 - Ellis, Cocks, and Williamson of the Communications
 Electronics Security Group of the British Government
 Communications Head Quarters (GCHQ).

Probabilistic Encryption^a

- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- What is required is a scheme that does not "leak" partial information.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.

^aGoldwasser and Micali (1982).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 455

The Setup

- Bob publishes n = pq, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- To send bit string $b_1b_2\cdots b_k$ to Bob, Alice encrypts the bits by choosing a random quadratic residue modulo n if b_i is 1 and a random quadratic nonresidue with Jacobi symbol 1 otherwise.
- A sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

Page 454

A Useful Lemma

Lemma 71 Let n = pq be a product of two distinct primes. Then a number $y \in Z_n^*$ is a quadratic residue modulo n if and only if $(y \mid p) = (y \mid q) = 1$.

- The "only if" part:
 - Let x be a solution to $x^2 = y \mod pq$.
 - Then $x^2 = y \mod p$ and $x^2 = y \mod q$ also hold.
 - Hence y is a quadratic modulo p and a quadratic residue modulo q.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 457

The Proof (concluded)

- The "if" part:
 - Let $a_1^2 = y \mod p$ and $a_2^2 = y \mod q$.
 - Solve

 $x = a_1 \bmod p$

 $x = a_2 \mod q$

for x with the Chinese remainder theorem.

- As $x^2 = y \mod p$, $x^2 = y \mod q$, and gcd(p,q) = 1, we must have $x^2 = y \mod pq$.

The Protocol for Alice

1: **for** i = 1, 2, ..., k **do**

2: Pick $r \in \mathbb{Z}_n^*$ randomly;

3: if $b_i = 1$ then

4: Send $r^2 \mod n$; {Jacobi symbol is 1.}

5: else

Send $r^2y \mod n$; {Jacobi symbol is still 1.}

7: end if

8: end for

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 459

The Protocol for Bob

1: **for** $i = 1, 2, \dots, k$ **do**

2: Receive r;

3: **if** (r | p) = 1 and (r | q) = 1 **then**

 $4: b_i := 1;$

5: else

6: $b_i := 0;$

7: end if

8: end for

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- This scheme is both polynomially secure and semantically secure.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 461

Digital Signatures^a

- ullet Alice wants to send Bob a signed document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

 $e_{\text{Alice}}, e_{\text{Bob}}, d_{\text{Alice}}, d_{\text{Bob}}.$

 $\bullet\,$ Assume the cryptosystem satisfies the commutative property

$$E(e, D(d, x)) = D(d, E(e, x)).$$
(6)

- As $(x^d)^e = (x^e)^d$, the RSA system satisfies it.
- Every cryptosystem guarantees D(d, E(e, x)) = x.

Digital Signatures Based on Public-Key Systems

• Alice signs x as

$$(x, D(d_{Alice}, x)).$$

• Bob receives (x,y) and verifies the signature by checking

$$E(e_{Alice}, y) = E(e_{Alice}, D(d_{Alice}, x)) = x$$

based on Eq. (6).

• The claim of authenticity is founded on the difficulty of inverting E_{Alice} without knowing the key d_{Alice} .

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 463

What Is a Proof?

- A proof convinces a party of a certain claim.
 - "Is $x^n + y^n \neq z^n$ for all $x, y, z \in \mathbb{Z}^+$ and n > 2?"
 - "Is graph G Hamiltonian?"
 - "Is $x^p = x \mod p$ for prime p and $p \not | x$?"
- In mathematics, a proof is a fixed sequence of theorems.
 - Think of a written examination.
- We will extend a proof to cover a proof *process* by which the validity of the assertion is established.
 - Think of a job interview or an oral examination.

^aDiffie and Hellman (1976).

Prover and Verifier

- There are two parties to a proof.
 - The **prover** (**Peggy**).
 - The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (**completeness**).
- The verifier's objective is to accept only correct assertions (**soundness**).
- The verifier usually has an easier job than the prover.
- The setup is very much like the Turing test.^a

^aTuring (1950).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 465

Interactive Proof Systems

- An **interactive proof** for a language *L* is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides based on the knowledge he acquired in the proof process whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm.
 - If the prover is not more powerful than the verifier, no interaction is needed.

Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
 - If $x \in L$, then the probability that x is accepted by the verifier is at least $1 2^{-|x|}$.
 - If $x \notin L$, then the probability that x is accepted by the verifier with *any* prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of |x|.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 467

 IP^{a}

- **IP** is the class of all languages decided by an interactive proof system.
- When $x \in L$, the completeness condition can be modified to require that the verifier accepts with certainty without affecting IP.^b
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public.^c

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 469

The Relations of IP with Other Classes

- NP \subseteq IP.
 - IP becomes NP when the verifier is deterministic.
- BPP \subseteq IP.
 - IP becomes BPP when the verifier ignores the prover's messages.
- IP actually coincides with PSPACE.^a

Graph Isomorphism

- $V_1 = V_2 = \{1, 2, \dots, n\}.$
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a permutation π on $\{1, 2, \ldots, n\}$ so that $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$.
- The task is to answer if $G_1 \cong G_2$ (isomorphic).
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- But it is not likely to be NP-complete.^a

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Graph Nonisomorphism

- $V_1 = V_2 = \{1, 2, \dots, n\}.$
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **nonisomorphic** if there exist no permutations π on $\{1, 2, \ldots, n\}$ so that $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$.
- The task is to answer if $G_1 \ncong G_2$ (nonisomorphic).
- Again, no known polynomial-time algorithms.
 - It is in coNP, but how about NP or BPP?
 - It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM ∈ IP.^a

Page 471

^aGoldwasser, Micali, and Rackoff (1985).

^bGoldreich, Mansour, and Sipser (1987).

^cGoldwasser and Sipser (1989).

^aShamir (1990).

^aSchöning (1987).

^aGoldreich, Micali, and Wigderson (1986).

A 2-Round Algorithm

- 1: Victor selects a random $i \in \{1, 2\}$;
- 2: Victor selects a random permutation π on $\{1, 2, \dots, n\}$;
- 3: Victor applies π on graph G_i to obtain graph H;
- 4: Victor sends (G_1, H) to Peggy;
- 5: if $G_1 \cong H$ then
- 6: Peggy sends j = 1 to Victor;
- 7: else
- 8: Peggy sends j = 2 to Victor;
- 9: end if
- 10: **if** j = i **then**
- Victor accepts;
- 12: **else**
- 13: Victor rejects;
- 14: **end if**

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 473

Analysis

- Victor runs in probabilistic polynomial time.
- $\bullet\,$ Suppose the two graphs are not isomorphic.
 - Peggy is able to tell which G_i is isomorphic to H.
 - So Victor always accepts.
- Suppose the two graphs are isomorphic.
 - No matter which i is picked by Victor, Peggy or any prover sees 2 identical graphs.
 - Peggy or any prover with exponential power has only probability one half of guessing i correctly.
 - So Victor erroneously accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than necessary.
 - Alice can claim that she found the assignment!
 - Login authentication faces essentially the same issue.
 - See

www.wired.com/wired/archive/1.05/atm_pr.html for a famous ATM fraud in the U.S.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 475

Knowledge in Proofs (concluded)

- Digital signatures authenticate documents but not individuals.
- They hence do not solve the problem.
- Suppose I always give Alice random bits.
- Alice's extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice of (the knowledge of) a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs^a

An interactive proof protocol (P, V) for language L has the **perfect zero-knowledge** property if:

- For every verifier V', there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of (P, V') on input x.

^aGoldwasser, Micali, and Rackoff (1985).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 477

Comments

- Zero knowledge is a property of the prover.
 - It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
 - The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
 - A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
 - The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover
 P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- For all practical purposes "whatever" can be done after interacting with a zero-knowledge prover can be done by just believing that the claim is indeed valid.
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 479

Comments (concluded)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier, but the fact that this conversation was held "on line."
- There is no zero-knowledge requirement when $x \notin L$.
- *Computational* zero-knowledge proofs are based on complexity assumptions.
- It is known that if one-way functions exist, then zero-knowledge proofs exist for every problem in NP.^a

^aGoldreich, Micali, and Wigderson (1986).

Will You Be Convinced?

- A newspaper commercial for hair-growing products for men.
 - A (for all practical purposes) bald man has a full head of hair after 3 months.
- A TV commercial for weight-loss products.
 - A (by any reasonable measure) overweight woman loses 10 kilograms in 10 weeks.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 481

Page 482

Zero-Knowledge Proof of Quadratic Residuosity

1: **for** $m = 1, 2, \dots, \log_2 n$ **do**

- Peggy chooses a random $v \in \mathbb{Z}_n^*$ and sends $y = v^2 \mod n$ to Victor;
- Victor chooses a random bit i and sends it to Peggy;
- Peggy sends $z = u^i v \mod n$, where u is a square root of x; $\{u^2 \equiv x \bmod n.\}$
- Victor checks if $z^2 \equiv x^i y \mod n$;
- 6: end for
- 7: Victor accepts x if Line 5 is confirmed every time;

Analysis

- Assume extracting the square root of a quadratic residue modulo a product of two primes is hard without knowing the factors.
- \bullet Suppose x is a quadratic nonresidue.
 - Peggy can answer only one of the two possible challenges.
 - * Reason: a is a quadratic residue if and only if xa is a quadratic nonresidue.
 - So Peggy will be caught in any given round with probability one half.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 483

Analysis (continued)

- Suppose x is a quadratic residue.
 - Peggy can answer all challenges.
 - So Victor will accept x.
- How about the claim of zero knowledge?
- \bullet The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
 - So interaction with Peggy is useless.

Analysis (continued)

- Here is how.
- Suppose x is a quadratic residue.
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient algorithm Bob that generates (y, i, z) with the same probability *without* accessing Peggy.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 485

Analysis (concluded)

- 1: Bob chooses a random $z \in \mathbb{Z}_n^*$;
- 2: Bob chooses a random bit i;
- 3: Bob calculates $y = z^2 x^{-i} \mod n$;
- 4: Bob writes (y, i, z) into the transcript;

Comments

- Bob cheats because (y, i, z) is *not* generated in the same order as in the original transcript.
 - Bob picks Victor's challenge first.
 - Bob then picks Peggy's answer.
 - Bob finally patches the transcript.
 - So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy, but we skip the details.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 487

Zero-Knowledge Proof of 3 Colorability^a

- 1: **for** $i = 1, 2, \dots, |E|^2$ **do**
- 2: Peggy chooses a random permutation π of the 3-coloring ϕ ;
- 3: Peggy samples an encryption scheme randomly and sends $\pi(\phi(1)), \pi(\phi(2)), \dots, \pi(\phi(|V|))$ encrypted to Victor;
- 4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;
- 5: **if** $e = (u, v) \in E$ **then**
- 6: Peggy reveals the coloring of u and v and "proves" that they correspond to their encryption;
- 7: else
- B: Peggy stops;
- 9: end if

^aGoldreich, Micali, and Wigderson (1986).

```
10: if the "proof" provided in Line 6 is not valid then
11: Victor rejects and stops;
12: end if
13: if \pi(\phi(u)) = \pi(\phi(v)) or \pi(\phi(u)), \pi(\phi(v)) \not\in \{1, 2, 3\} then
14: Victor rejects and stops;
15: end if
16: end for
17: Victor accepts;
```

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 489

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- If the graph is not 3-colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability $\leq (1-m^{-1})^{m^2} \leq e^{-m}$, where m=|E|.
- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is more intricate.