Conditions for Perfect Secrecy?®

e Consider a cryptosystem where:
— The space of ciphertext is as large as that of keys.
— Every plaintext has a nonzero probability of being
used.
e It is perfectly secure if and only if the following hold.
— A key is chosen with uniform distribution.

— For each plaintext x and ciphertext y, there exists a
unique key e such that E(e,z) = y.

aShannon (1949).
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The One-Time Pad?

Alice generates a random string r as long as x;
Alice sends r to Bob over a secret channel;
Alice sends r @ z to Bob over a public channel;
Bob receives y;

Bob recovers z :=y @ r;

2Mauborgne and Vernam (1917), Shannon (1949); allegedly used for
the hotline between Russia and U.S.

Analysis
e The one-time pad uses e =d = r.
e This is said to be a private-key cryptosystem.
e Knowing z and knowing r are equivalent.

e Because r is random and private, the one-time pad
achieves perfect secrecy (see also p. 441).

e The random bit string must be new for each round of

communication.

e The assumption of a private channel is problematic.
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Public-Key Cryptography?®

e Suppose only d is private to Bob, whereas e is public
knowledge.

e Bob generates the (e, d) pair and publishes e.
e Anybody like Alice can send E(e,z) to Bob.
e Knowing d, Bob can recover z by D(d, E(e, z)) = .

e The assumptions are complexity-theoretic.
— It is computationally difficult to compute d from e.

— It is computationally difficult to compute z from y
without knowing d.

aDiffie and Hellman (1976).
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Complexity Issues

Given y and z, it is easy to verify whether E(e,z) = y.

A public-key cryptosystem in some sense is within NP.

e A necessary condition for the existence of secure
public-key cryptosystems is therefore P # NP.

But more is needed than P # NP.

For example, it is not sufficient that D is hard to
compute in the worst case.

We want it to be hard to compute in “most” or

“average” cases.

Candidates of One-Way Functions

e Modular exponentiation f(z) = ¢® mod p, where g is a
primitive root of p.

— Discrete logarithm is hard.?

e The RSA® function f(z) = 2° mod pq for an odd e relatively
prime to ¢(pq).
— Breaking the RSA function is hard.

e Modular squaring f(z) = z* mod pq.

— Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic residuacity
assumption (QRA).

2But it is in NP in some sense; Grollmann and Selman (1988).
bRivest, Shamir, and Adleman (1978).
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One-Way Functions

e We say that f is a one-way function if:

— f is one-to-one.

— f can be computed in polynomial time.
— f~! cannot be computed in polynomial time.

% Exhaustive search works, but it is too slow.

e Even if P £ NP, there is no guarantee that one-way

functions exist.

e No functions have been proved to be one-way.

— Breaking a glass is a one-way function?
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— For all z € &%, |z |V* < |f(z)| < |z |* for some k > 0.

The RSA Function
e Let p,q be two distinct primes.

e The RSA function is ¢ mod pq for an odd e relatively
prime to ¢(pq).
— By Lemma 50 (p. 335),

¢(pq)=pq<1—%) (1—3) =pg—p—q+1.

e As ged(e, ¢(pq)) = 1, there is a d such that
ed =1 mod ¢(pq),

which can be found by the Euclidean algorithm.
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A Public-Key Cryptosystem Based on RSA

e Bob generates p and q. The Secret-Key Agreement Problem

e Bob publishes pg and the encryption key e, a number e Exchanging messages securely using a private-key

relatively prime to ¢(pq). cryptosystem requires Alice and Bob possessing the

k . 443).
— The encryption function is ¥ = ¢ mod pgq. same key (sce p )

H th th t k hen th
e Knowing ¢(pq), Bob calculates d such that © Tiow can they agree on the saie secret key when the

ed =1+ k¢(pq) for some k € Z.
— The decryption function is y* mod pq.

channel is insecure?

e This is called the secret-key agreement problem.

— It works because y¢ = z¢¢ = z!+*k¢(P9) = 2 mod pq by e It was solved by Diffie and Hellman (1976) using
the Fermat-Euler theorem when ged(z, pq) = 1 one-way functions.
(p. 342).
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The “Security” of the RSA Function
e Factoring pq or calculating d from (e, pq) seems hard.
— See also p. 339.

e Breaking the last bit of RSA is as hard as breaking the
RSA 2

e Recall that problem A is “harder than” problem B if
solving A results in solving B.

— Factorization is “harder than” breaking the RSA.

The Diffie-Hellman Secret-Key Agreement Protocol
1: Alice and Bob agree on a large prime p and a primitive
root g of p; {p and g are public.}

Alice chooses a large number a at random;

Alice computes a = g% mod p;

Bob chooses a large number b at random;

Bob computes 3 = ¢ mod p;

Alice sends « to Bob, and Bob sends S to Alice;

Alice computes her key 5% mod p;

— Calculating Euler’s phi function is “harder than”
breaking the RSA.

e Recommended RSA key sizes: 1024 bits up to 2010, 2048
bits up to 2030, and 3072 bits up to 2031 and beyond.
aAlexi, Chor, Goldreich, and Schnorr (1988).

e I TA R >

Bob computes his key a® mod p;
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Analysis

The keys computed by Alice and Bob are identical:
Ba — gba — gab — ab mod p.

e To compute the common key from p, g, o, 8 is known as
the Diffie-Hellman problem.

It is conjectured to be hard.

If discrete logarithm is easy, then one can solve the
Diffie-Hellman problem.

— Because a and b can then be obtained by Eve.

Probabilistic Encryption?

e The ability to forge signatures on even a vanishingly

small fraction of strings of some length is a security
weakness if those strings were the probable ones!

e What is required is a scheme that does not “leak”

partial information.

e The first solution to the problems of skewed distribution

and partial information was based on the QRA.
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2Goldwasser and Micali (1982).
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A Parallel History

e Diffie and Hellman’s solution to the secret-key
agreement problem led to public-key cryptography.

e At around the same time (or earlier) in Britain, the
RSA public-key cryptosystem was invented first before
the Diffie-Hellman secret-key agreement scheme was.

— Ellis, Cocks, and Williamson of the Communications

Electronics Security Group of the British Government
Communications Head Quarters (GCHQ).
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The Setup

e Bob publishes n = pq, a product of two distinct primes,

and a quadratic nonresidue y with Jacobi symbol 1.

e Bob keeps secret the factorization of n.

e To send bit string b1bs - - - by to Bob, Alice encrypts the

bits by choosing a random quadratic residue modulo n if
b; is 1 and a random quadratic nonresidue with Jacobi
symbol 1 otherwise.

e A sequence of residues and nonresidues are sent.

e Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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A Useful Lemma ,
o ‘ The Protocol for Alice
I;;lmma 71 bLet n :Zp;qlbe a pr(;duc?f of t%o dzstz;wz; przmes. I fori=1,2,... kdo
;n al num ery €Z) is a qlua ratic residue modulo n if 2 Pick r € Z* randomly;
and only if (y|p) = (y|q) =1. 3 if b, = 1 then
e The “only if” part: 4 Send 7? mod n; {Jacobi symbol is 1.}
— Let z be a solution to 22 = y mod pg. 5. else
— Then 22 = y mod p and 22 = y mod g also hold. 6 Send r2y mod n; {Jacobi symbol is still 1.}
7. end if
— Heflce y is a quadratic modulo p and a quadratic 8. end for
residue modulo q.
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The Proof (concluded)
e The “if” part: The Protocol for Bob

— Let a? = y mod p and a2 = y mod q. Ll fori=1,2,... .k do
Sol 2:  Receive r;
o ooe 3: if (r|p)=1and (r|q) =1 then
x = a1 modp, 4 b; :=1,;
¢ = azmodq 5:  else
6 b; :=0;
for x with the Chinese remainder theorem. 7. end if
— As 22 = y mod p, ¥? = y mod ¢, and ged(p, q) = 1, 8: end for

we must have 22 = y mod pq.
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Semantic Security
e This encryption scheme is probabilistic.

e There are a large number of different encryptions of a

given message.

e One is chosen at random by the sender to represent the

message.

e This scheme is both polynomially secure and
semantically secure.
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Digital Signatures?
e Alice wants to send Bob a signed document x.
e The signature must unmistakably identifies the sender.
e Both Alice and Bob have public and private keys
€Alice; €Bob, BAlice, dBob-
e Assume the cryptosystem satisfies the commutative property
E(e,D(d,z)) = D(d, E(e, z)). (6)

— As (z%)° = (z°)%, the RSA system satisfies it.

— Every cryptosystem guarantees D(d, E(e,z)) = z.

aDiffie and Hellman (1976).

Digital Signatures Based on Public-Key Systems
e Alice signs z as
(z, D(dAlice, X))-
e Bob receives (z,y) and verifies the signature by checking
E(eatice, ¥) = E(eatice, D(datice, 7)) =
based on Eq. (6).

e The claim of authenticity is founded on the difficulty of
inverting Fajice without knowing the key daiice-
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What Is a Proof?

e A proof convinces a party of a certain claim.
— “Is g™ + y™ # 2" for all z,y,z € ZT and n > 27"
— “Is graph G Hamiltonian?”
— “Is P = x mod p for prime p and p fz?”

e In mathematics, a proof is a fixed sequence of theorems.
— Think of a written examination.

e We will extend a proof to cover a proof process by which
the validity of the assertion is established.

— Think of a job interview or an oral examination.
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Prover and Verifier

e There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

e Given an assertion, the prover’s goal is to convince the
verifier of its validity (completeness).

e The verifier’s objective is to accept only correct
assertions (soundness).

e The verifier usually has an easier job than the prover.

e The setup is very much like the Turing test.?

aTuring (1950).

Interactive Proof Systems (concluded)

e The system decides L if the following two conditions
hold for any common input z.
— If x € L, then the probability that z is accepted by
the verifier is at least 1 — 27121,
— If x € L, then the probability that z is accepted by
the verifier with any prover replacing the original

prover is at most 27171,

e Neither the number of rounds nor the lengths of the
messages can be more than a polynomial of |z |.
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Interactive Proof Systems

e An interactive proof for a language L is a sequence of
questions and answers between the two parties.

e At the end of the interaction, the verifier decides based
on the knowledge he acquired in the proof process
whether the claim is true or false.

e The verifier must be a probabilistic polynomial-time
algorithm.
e The prover runs an exponential-time algorithm.

— If the prover is not more powerful than the verifier,

no interaction is needed.

An Interactive Proof
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P2

e IP is the class of all languages decided by an interactive

proof system.

e When x € L, the completeness condition can be
modified to require that the verifier accepts with
certainty without affecting IP.P

e Similar things cannot be said of the soundness condition
when x ¢ L.

e Verifier’s coin flips can be public.©

2Goldwasser, Micali, and Rackoff (1985).
bGoldreich, Mansour, and Sipser (1987).
¢Goldwasser and Sipser (1989).

Graph Isomorphism
e Vi=Vo=1{1,2,... ,n}.

e Graphs G1 = (V1, E1) and G = (Vs, E3) are
isomorphic if there exists a permutation 7 on
{1,2,...,n} so that (u,v) € By & (w(u),n(v)) € Es.

e The task is to answer if G; & G5 (isomorphic).
e No known polynomial-time algorithms.
e The problem is in NP (hence IP).

e But it is not likely to be NP-complete.?

2Schéning (1987).
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The Relations of IP with Other Classes
e NP CIP.
— IP becomes NP when the verifier is deterministic.
e BPP CIP.
— IP becomes BPP when the verifier ignores the

prover’s messages.

e IP actually coincides with PSPACE.?

2Shamir (1990).

Graph Nonisomorphism

V1:%:{1,2,... ,n}.

Graphs G, = (V4, E1) and Gy = (V3, Es) are
nonisomorphic if there exist no permutations 7 on
{1,2,... ,n} so that (u,v) € E1 & (n(u),n(v)) € Es.

The task is to answer if G; 2 G2 (nonisomorphic).

Again, no known polynomial-time algorithms.
— It is in coNP, but how about NP or BPP?
— It is not likely to be coNP-complete.

e Surprisingly, GRAPH NONISOMORPHISM € [P.?

2Goldreich, Micali, and Wigderson (1986).
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A 2-Round Algorithm

1: Victor selects a random ¢ € {1,2};

2: Victor selects a random permutation 7 on {1,2,... ,n};
3: Victor applies 7 on graph G; to obtain graph H;
4: Victor sends (G1, H) to Peggy;

5: if G1 & H then

6: Peggy sends j =1 to Victor;

7: else

8:  Peggy sends j = 2 to Victor;

9: end if
10: if j =4 then
11:  Victor accepts;
12: else
13:  Victor rejects;
14: end if
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Analysis

e Victor runs in probabilistic polynomial time.

Suppose the two graphs are not isomorphic.
— Peggy is able to tell which G; is isomorphic to H.

— So Victor always accepts.

Suppose the two graphs are isomorphic.

— No matter which ¢ is picked by Victor, Peggy or any
prover sees 2 identical graphs.

— Peggy or any prover with exponential power has only
probability one half of guessing ¢ correctly.

— So Victor erroneously accepts with probability 1/2.

Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

e Suppose I know a satisfying assignment to a satisfiable

boolean expression.
e I can convince Alice of this by giving her the assignment.

e But then I give her more knowledge than necessary.
— Alice can claim that she found the assignment!
— Login authentication faces essentially the same issue.

— See
www.wired.com/wired/archive/1.05/atm_pr.html
for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

e Digital signatures authenticate documents but not
individuals.

e They hence do not solve the problem.
e Suppose I always give Alice random bits.

e Alice’s extracts no knowledge from me by any measure,
but I prove nothing.

e Question 1: Can we design a protocol to convince Alice
of (the knowledge of) a secret without revealing
anything extra?

Question 2: How to define this idea rigorously?
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Comments (continued)

a
Zero Knowledge Proofs e Whatever a verifier can “learn” from the specified prover

An interactive proof protocol (P, V) for language L has the P via the communication channel could as well be
perfect zero-knowledge property if: computed from the verifier alone.
e For every verifier V', there is an algorithm M with e The verifier does not learn anything except “z € L.”

expected polynomial running time. e For all practical purposes “whatever” can be done after

e M on any input & € L generates the same probability interacting with a zero-knowledge prover can be done by
distribution as the one that can be observed on the just believing that the claim is indeed valid.

. y .
communication channel of (P, V") on input 2. e Zero-knowledge proofs yield no knowledge in the sense

aGoldwasser, Micali, and Rackoff (1985). that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.
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Comments (concluded)

Comments _ . o
e The “paradox” is resolved by noting that it is not the
e Zero knowledge is a property of the prover. transcript of the conversation that convinces the verifier,
— It is the robustness of the prover against attempts of but the fact that this conversation was held “on line.”

the verifier to extract knowledge via interaction. e There is no zero-knowledge requirement when z ¢ I.
— The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program. e Computational zero-knowledge proofs are based on

complexity assumptions.

A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim. e It is known that if one-way functions exist, then

zero-knowledge proofs exist for every problem in NP.?

The proof is hence not transferable.

2Goldreich, Micali, and Wigderson (1986).
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Analysis

Will You Be Convinced? e Assume extracting the square root of a quadratic residue

] . ) modulo a product of two primes is hard without
e A newspaper commercial for hair-growing products for .

knowing the factors.
men.

— A (for all practical purposes) bald man has a full * Suppose z is a quadratic nonresidue.

head of hair after 3 months. — Peggy can answer only one of the two possible

. . challenges.
e A TV commercial for weight-loss products. . . . . ) .
* Reason: a is a quadratic residue if and only if za is

— A (by any reasonable measure) overweight woman . :
a quadratic nonresidue.

loses 10 kilograms in 10 weeks. ) ) ) )
— So Peggy will be caught in any given round with

probability one half.
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Zero-Knowledge Proof of Quadratic Residuosity Analysis (continued)
1: form=1,2,... ,logyn do

e Suppose z is a quadratic residue.
2:  Peggy chooses a random v € Z and sends

y = v2 mod n to Victor; — Peggy can answer all challenges.
Victor chooses a random bit 7 and sends it to Peggy:; — So Victor will accept z.

4:  Peggy sends z = u*v mod n, where u is a square root e How about the claim of zero knowledge?

of z; {u? = £ mod n.}

5. Victor checks if 22 = ziy mod e The transcript between Peggy and Victor when z is a

6: end for quadratic residue can be generated without Peggy!

7: Victor accepts z if Line 5 is confirmed every time; — So interaction with Peggy is useless.
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Comments

Analysis (continued) e Bob cheats because (y, i, z) is not generated in the same
) order as in the original transcript.

e Here is how.
— Bob picks Victor’s challenge first.
e Suppose z is a quadratic residue.

Bob then picks Peggy’s answer.

e In each round of interaction with Peggy, the transcript is — Bob finally patches the transcript.
a triplet (y, 4, 2). — So it is not the transcript that convinces Victor, but
e We present an efficient algorithm Bob that generates that conversation with Peggy is held “on line.”
(v, i, 2) with the same probability without accessing e The same holds even if the transcript was generated by
Peggy. a cheating Victor’s interaction with (honest) Peggy, but
we skip the details.
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Zero-Knowledge Proof of 3 Colorability?
1: fori=1,2,...,|E* do
2:  Peggy chooses a random permutation 7 of the 3-coloring ¢;
3:  Peggy samples an encryption scheme randomly and sends
Analysis (concluded) m(p(1)), m(¢(2)),...,m(¢(|V])) encrypted to Victor;
4:  Victor chooses at random an edge e € E and sends it to
1: Bob chooses a random 2z € Z; . .
L Peggy for the coloring of the endpoints of e;
2: Bob chooses a random b?t i if e = (u,0) € E then
3: Bob calculates y = z%z™" mod n; 6: Peggy reveals the coloring of v and v and “proves” that
4: Bob writes (y, 1, 2) into the transcript; they correspond to their encryption;
. else
8: Peggy stops;
9: end if
2Goldreich, Micali, and Wigderson (1986).
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10:  if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if w(p(u)) = w(d(v)) or w(¢(u)), m($(v)) & {1,2,3} then
14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;
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Analysis

e If the graph is 3-colorable and both Peggy and Victor
follow the protocol, then Victor always accepts.

e If the graph is not 3-colorable and Victor follows the
protocol, then however Peggy plays, Victor will accept
with probability < (1—m )™ < e~™, where m = | E|.

e Thus the protocol is valid.

e This protocol yields no knowledge to Victor as all he
gets is a bunch of random pairs.

e The proof that the protocol is zero-knowledge to any

verifier is more intricate.
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