Randomized Complexity Classes; RP

e Let N be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each
step.

e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If £ € L, then at least half of the 2P(12]) computation
paths of N on z halt with “yes.”

— If x € L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo
TMs is denoted RP (randomized polynomial time).

Where RP Fits

e P CRP C NP.

— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.
e COMPOSITENESS € RP; PRIMES € coRP; PRIMES € RP.?
— In fact, PRIMES € P.

e RP UcoRP is a “plausible” notion of efficient
computation.

2Adleman and Huang (1987).
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Comments on RP
e Nondeterministic steps can be seen as fair coin flips.

e There are no false positive answers.

The probability of false negatives, 1 — ¢, is at most 0.5.

Any constant between 0 and 1 can replace 0.5.

— By repeating the algorithm k& = [—log%%] times, the

probability of false negatives becomes (1 — €)* < 0.5.

e In fact, € can be arbitrarily close to 0 as long as it is of
the order 1/p(n) for some polynomial p(n).
_log211—e = O(%) = O(p(n))
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ZPP? (Zero Probabilistic Polynomial)
e The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false
negatives.

e If we repeatedly run both Monte Carlo algorithms,
eventually one definite answer will come (unlike RP).

— A positive answer from the one without false
positives.

— A negative answer from the one without false

negatives.

aGill (1977).
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Et Tu, RP?
The ZPP Algorithm (Las Vegas) 1 {Suppose L € RP.}
1: {Suppose L € ZPP.} 2: {N decides L without false positives.}
2: {7 has no false positives, and N» has no false 3: while true do
negatives. } 4: if N(z) = “yes” then
3: while true do 5: return “yes”;
4:  if Ni(z) = “yes” then 6 endif
U 7:  {But what to do here?}
5: return “yes”; .
. 8: end while
6: end if
7. if Ny(z) = “no” then e You eventually get a “yes” if z € L.
“ ”. )
& return “no’; e But how to get a “no” when = ¢ L?
9: end if ' '
10: end while ® You have to sacrifice either correctness or bounded
running time.
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ZPP (concluded) Large Deviations

e The expected running time for the correct answer to e You have a biased coin
emerge is polynomial.

e One side has probability 0.5 + € to appear and the other

— The probability that a run of the 2 algorithms does
0.5 — ¢, for some 0 < e < 1.

not generate a definite answer is 0.5.
— Let p(n) be the running time of each run. * But you do not know which is which.

— The expected running time for a definite answer is e How to decide which side is the more likely—with high
confidence?

e Answer: Flip the coin many times and pick the side that

Z 0.5%p(n) = 2p(n).

appeared the most times.
e Essentially, ZPP is the class of problems that can be

L . 2
solved without errors in expected polynomial time. Question: Can you quantify the confidence?
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The Chernoff Bound®

Theorem 65 (Chernoff (1952)) Suppose x1,z2,... ,Tn
are independent random variables taking the values 1 and 0
with probabilities p and 1 — p, respectively. Let X = Z:-L:l ;.
Then for all0 <0 <1,

prob[ X > (1+60)pn] < e 0°Pn/3,

e The probability that the deviate of a binomial
random variable from its expected value decreases
exponentially with the deviation.

e The Chernoff bound is asymptotically optimal.

2Herman Chernoff (1923-).
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The Proof

Let ¢ be any positive real number.

e Then

prob[ X > (1+6) pn] = prob[e'™* > et(1+9)pn]_

Markov’s inequality (p. 372) generalized to real-valued
random variables says that

prob [e"* > kE[e'*]] < 1/k.

With k = et(1+0)p7 /B[ !X ] we have

prob[ X > (14 6) pn] < e tHOPrptX ],

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 408

The Proof (continued)

e Because X = -, z; and z;’s are independent,
B[e™] = (E[e"™ )" =[1+p(e' = 1)]".
e Substituting, we obtain

prob[ X > (14 6) pn]

IN

t
e—t(1+9) pnepn(e —1)

IN

as (14 a)™ < e for all a > 0.

e—t(1+9)pn[ 1 —I—p(et _ 1) ]n

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 409

The Proof (concluded)

e With the choice of t = In(1 + ), the above becomes

prob[ X > (1 + ) pn] < Prl0-(1+0)In(1+6)]

e The exponent expands to —% + % — % + .- for
0 <6 <1, which is less than

6

2 3 1 1 1 2
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Power of the Majority Rule
From prob[ X < (1 —6)pn] < e~ G Pn (prove it):
Corollary 66 If p=(1/2) + € for some 0 < € < 1/2, then

prob lel < n/2] < e—<’n/2,

i=1

e Our original problem (p. 406) hence demands ~ 1.4k /e?
independent coin flips to guarantee making an error
with probability at most 2% with the majority rule.

e The textbook’s corollary to Lemma 11.9 seems incorrect.

Magic 3/47
e The number 3/4 bounds the probability of a right

answer away from 1/2.

e Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.

e In fact, 0.5 plus any inverse polynomial between 1/2 and
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BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages for which there is
a precise polynomial-time NTM N such that:

— If £ € L, then at least 3/4 of the computation paths
of N on z lead to “yes.”

— If # ¢ L, then at least 3/4 of the computation paths
of N on z lead to “no.”

e N accepts or rejects by a clear majority.

aGill (1977).

1,
0.5+ 1/p(n),
can be used.
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The Majority Vote Algorithm
Suppose L is decided by N by majority (1/2) + e.
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1: fori=1,2,...,2k+1do
2:  Run N on input z;
3: end for
4: if “yes” is the majority answer then
5. “yes”;
6: else
7: “no”;
8: end if
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Aspects of BPP
Analysis

e BPP is the most comprehensive yet plausible notion of
e The running time remains polynomial, being 2k + 1 efficient computation.

times N's running time. — If a problem is in BPP, we take it to mean that the

e By Corollary 66 (p. 411), the probability of a false problem can be solved efficiently.
answer is at most e~ *. — In this aspect, BPP has effectively replaced P.
e By taking k = [2/€?], the error probability is at most e (RP UcoRP) C (NP U coNP).

1/4.
e (RP UcoRP) C BPP.
e As with the RP case, € can be any inverse polynomial,

. - e Whether BPP C (NP U coNP) is unknown.
because k remains polynomial in n.

e But it is unlikely that NP C BPP (p. 641).
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coBPP
Probability Amplification for BPP e The definition of BPP is symmetric: acceptance by clear

e Let m be the number of random bits used by a BPP majority and rejection by clear majority.

algorithm. e An algorithm for L € BPP becomes one for L € coBPP
— By definition, m is polynomial in n. by reversing the answer.

e With £ = O(log m) in the majority vote algorithm, we * Hence BPP = coBPP.
can lower the error probability to < (3m)~!. e This approach does not work for RP.

e It did not work for NP either.
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BPP and coBPP Circuit Complexity

e Circuit complexity is based on boolean circuits instead
of Turing machines.

e A boolean circuit with n inputs computes a boolean
- function of n variables.

e By identify true with 1 and false with 0, a boolean
circuit with n inputs accepts certain strings in { 0,1 }"™.

_ - _ - e To relate circuits with arbitrary languages, we need one
ves 1o no yes .. . .
circuit for each possible input length n.
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Formal Definitions

“The Good, the Bad, and the Ugly” [ ] The SiZe Of a circuit is the number Of gates in it.

e A family of circuits is an infinite sequence
C = (Cy,C4,...) of boolean circuits, where C,, has n
boolean inputs.

e L C {0,1}* has polynomial circuits if there is a family
of circuits C such that:

— The size of C), is at most p(n) for some fixed
polynomial p.

— For input z € {0,1}*, C|,| outputs 1 if and only if
z € L.
x C, accepts LN {0,1}"™.
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S _ The Circuit Complexity of P
Exponential Circuits Contain All Languages
Proposition 68 All languages in P have polynomial

e Theorem 16 (p. 157) implies that there are languages circuits.

that cannot be solved by circuits of size 2" /(2n).
e Let L € P be decided by a TM in time p(n).
e But exponential circuits can solve all problems.
e By Corollary 31 (p. 240), there is a circuit with
Proposition 67 All decision problems (decidable or O(p(n)?) gates that accepts L N {0, 1}

otherwise) can be solved by a circuit of size 272
e The size of the circuit depends only on L and the length
e We will show that for any language L C {0, 1}*,

of the input.
LN {0,1}" can be decided by a circuit of size 2712

e The size of the circuit is polynomial in n.
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The Proof (concluded) Languages That Polynomial Circuits Accept
e Define boolean function f : {0,1}™ — {0,1}, where e Do polynomial circuits accept only languages in P?
1 zizp--zn € L, e There are undecidable languages that have polynomial
f@ize - zn) = circuits.

0 zymo- - zn & L.
— Let L C {0,1}* be an undecidable language.

f@ize-zn) = (z1 A f(lza - zn)) V (mz1 A f(Oz2 - - - 20)).

Let U = {1™ : the binary expansion of n is in L}.

e The circuit size s(n) for f(x12z2- - 2,) hence satisfies — U must be undecidable.
s(n) =3+ 2s(n— 1) — UN{1}" can be accepted by C,, that is trivially false
if 1" € U and trivially true if 1" € U.
with s(1) = 1. — The family of circuits (Cp, Ch,...) is polynomial in
e Solve it to obtain s(n) = 2n+1 4 27—t — 4, size.
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A Patch

e Despite the simplicity of a circuit, the previous
discussions imply the following:
— Circuits are not a realistic model of computation.

— Polynomial circuits are not a plausible notion of
efficient computation.

e What gives?
e The effective and efficient constructibility of
Co, Ch, ... .
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Uniformity

e A family (Cy,C1,...) of circuits is uniform if there is a
log n-space bounded TM which on input 1™ outputs C,.
— Circuits now cannot accept undecidable languages
(why?).
— The circuit family on p. 426 is not constructible by a

single Turing machine (algorithm).

e A language has uniformly polynomial circuits if
there is a uniform family of polynomial circuits that
decide it.

Uniformly Polynomial Circuits and P

Theorem 69 L € P if and only if L has uniformly
polynomial circuits.

e One direction was proved in Proposition 68 (p. 425).
e Now suppose L has uniformly polynomial circuits.

e Decide z € L in polynomial time as follows:
— Letn=|z]|.
— Build C,, in logn space, hence polynomial time.

— Evaluate the circuit with input z in polynomial time.

e Therefore L € P.
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Relation to P vs. NP

e Theorem 69 implies that P # NP if and only if
NP-complete problems have no uniformly polynomial

circuits.

e A stronger conjecture: NP-complete problems have no
polynomial circuits, uniformly or not.

e The above is currently the preferred approach to proving
the P £ NP conjecture—without success so far.

— Theorem 16 (p. 157) states that there are boolean
functions requiring 2" /(2n) gates to compute.

— In fact, almost all boolean functions do.
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BPP’s Circuit Complexity The Proof (continued)
Theorem 70 (Adleman (1978)) All languages in BPP e Let z be an input with |z | = n.
have polynomial circuits. e Circuit C,, simulates N on z with each sequence of
e Our proof will be nonconstructive in that only the choices in A, and then takes the majority of the m
existence of the desired circuits is shown. outcomes.
— Something exists if its probability of existence is e Because N with a; is a polynomial-time TM, it can be
nonzero. simulated by polynomial circuits of size O(p(n)?).
e How to efficiently generate circuit C,, given 1™ is not — See the proof of Proposition 68 (p. 425).
known. e The size of C,, is therefore O([mp(n)]?) = O(n?p(n)?), a
e If the construction of C,, is efficient, then P = BPP, an polynomial.
unlikely result. e We next prove the existence of A,, making C,, correct.
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 431 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 433
The Proof The Circuit
e Let L € BPP be decided by a precise NTM N by clear
majority.

e We shall prove that L has polynomial circuits

Co,Ch, .. ..

e Suppose N runs in time p(n), where p(n) is a
polynomial.

e Let A, = {a1,aq,...,an}, where a; € {0, 1}p(").

o Let m=12(n+1).

Majority logic

e Each a; € A,, represents a sequence of nondeterministic
choices—i.e., a computation path—for N.
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The Proof (continued)

Call a; bad if it leads N to a false positive or a false

negative answer.
Select A,, uniformly randomly.

For each = € {0,1}", 1/4 of the computations of N are

€erroneous.

Because the sequences in A,, are chosen randomly and
independently, the expected number of bad a;’s is m/4.

By the Chernoff bound (p. 407), the probability that the
number of bad a;’s is m/2 or more is at most

e—m/12 < 2—(n+1).
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The Proof (concluded)
The error probability is < 271 for each = € {0,1}".

The probability that there is an x such that A, results

in an incorrect answer is < 272~ (n+1) — 9-1,
— probl] AUBU:---] < prob[A] + prob[B|+---.

So with probability one half, a random A,, produces a
correct C, for all inputs of length n.

Because this probability exceeds 0, an A,, that makes
majority vote work for all inputs of length n exists.

Hence a correct C,, exists.

Cryptography?

Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

The protocol should be such that the message is known
only to Alice and Bob.

The art and science of keeping messages secure is
cryptography.

Eve
Alice Bob
2 “Whoever wishes to keep a secret must hide the fact that he possesses
one.” — Johann Wolfgang von Goethe (1749-1832).
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Encryption and Decryption

Alice and Bob agree on two algorithms E and D—the
encryption and the decryption algorithms.

Both E and D are known to the public in the analysis.
Alice runs E and wants to send a message x to Bob.
Bob operates D.

Privacy is assured in terms of two numbers e, d, the
encryption and decryption keys.

Alice sends y = E(e, z) to Bob, who then performs
D(d,y) = z to recover z.

z is called plaintext, and y is called ciphertext.
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Some Requirements
e D should be an inverse of F given e and d.

e D and E must both run in (probabilistic) polynomial

time.

e Eve should not be able to recover y from z without
knowing d.
— As D is public, d must be kept secret.

— e may or may not be a secret.
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Degrees of Security

e Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the

interception.
e Such systems are said to be informationally secure.

e A system is computationally secure if breaking it is
theoretically possible, just computationally infeasible.
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