Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step.
- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
 - If $x \in L$, then at least half of the $2^{p(|x|)}$ computation paths of N on x halt with "yes."
 - If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted **RP** (randomized polynomial time).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 399

Comments on RP

- Nondeterministic steps can be seen as fair coin flips.
- There are no false positive answers.
- The probability of false negatives, 1ϵ , is at most 0.5.
- Any constant between 0 and 1 can replace 0.5.
 - By repeating the algorithm $k = \lceil -\frac{1}{\log_2 1 \epsilon} \rceil$ times, the probability of false negatives becomes $(1 \epsilon)^k \le 0.5$.
- In fact, ϵ can be arbitrarily close to 0 as long as it is of the order 1/p(n) for some polynomial p(n).

$$- -\frac{1}{\log_2 1 - \epsilon} = O(\frac{1}{\epsilon}) = O(p(n)).$$

Where RP Fits

- $P \subseteq RP \subseteq NP$.
 - A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 - A Monte Carlo TM is an NTM with extra demands on the number of accepting paths.
- Compositeness \in RP; primes \in coRP; primes \in RP.
 - In fact, PRIMES \in P.
- $RP \cup coRP$ is a "plausible" notion of efficient computation.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 401

ZPP^a (Zero Probabilistic Polynomial)

- The class **ZPP** is defined as $RP \cap coRP$.
- A language in ZPP has *two* Monte Carlo algorithms, one with no false positives and the other with no false negatives.
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
 - A positive answer from the one without false positives.
 - A negative answer from the one without false negatives.

^aAdleman and Huang (1987).

^aGill (1977).

The ZPP Algorithm (Las Vegas)

```
    {Suppose L ∈ ZPP.}
    {N₁ has no false positives, and N₂ has no false negatives.}
    while true do
    if N₁(x) = "yes" then
    return "yes";
    end if
    if N₂(x) = "no" then
    return "no";
    end if
    end if
```

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 403

ZPP (concluded)

- The *expected* running time for the correct answer to emerge is polynomial.
 - The probability that a run of the 2 algorithms does not generate a definite answer is 0.5.
 - Let p(n) be the running time of each run.
 - The expected running time for a definite answer is

$$\sum_{i=1}^{\infty} 0.5^{i} i p(n) = 2p(n).$$

• Essentially, ZPP is the class of problems that can be solved without errors in expected polynomial time.

Et Tu, RP?

```
1: {Suppose L \in \text{RP.}}
2: {N decides L without false positives.}
3: while true do
```

4: if N(x) = "yes" then 5: return "yes";

6: end if

7: {But what to do here?}

8: end while

- You eventually get a "yes" if $x \in L$.
- But how to get a "no" when $x \notin L$?
- You have to sacrifice either correctness or bounded running time.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 405

Large Deviations

- You have a biased coin.
- One side has probability $0.5 + \epsilon$ to appear and the other 0.5ϵ , for some $0 < \epsilon < 1$.
- But you do not know which is which.
- How to decide which side is the more likely—with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify the confidence?

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 404

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Chernoff Bounda

Theorem 65 (Chernoff (1952)) Suppose x_1, x_2, \ldots, x_n are independent random variables taking the values 1 and 0 with probabilities p and 1-p, respectively. Let $X = \sum_{i=1}^{n} x_i$. Then for all $0 \le \theta \le 1$,

$$\operatorname{prob}[X \ge (1+\theta) \, pn] \le e^{-\theta^2 pn/3}.$$

- The probability that the deviate of a **binomial** random variable from its expected value decreases exponentially with the deviation.
- The Chernoff bound is asymptotically optimal.
- ^aHerman Chernoff (1923–).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 407

The Proof

- Let t be any positive real number.
- Then

$$\operatorname{prob}[X \ge (1+\theta) pn] = \operatorname{prob}[e^{tX} \ge e^{t(1+\theta) pn}].$$

• Markov's inequality (p. 372) generalized to real-valued random variables says that

$$\operatorname{prob}\left[e^{tX} \ge kE[e^{tX}]\right] \le 1/k.$$

• With $k = e^{t(1+\theta) pn} / E[e^{tX}]$, we have

$$\operatorname{prob}[X \ge (1+\theta) \, pn] \le e^{-t(1+\theta) \, pn} E[e^{tX}].$$

The Proof (continued)

• Because $X = \sum_{i=1}^{n} x_i$ and x_i 's are independent,

$$E[e^{tX}] = (E[e^{tx_1}])^n = [1 + p(e^t - 1)]^n.$$

• Substituting, we obtain

$$\operatorname{prob}[X \ge (1+\theta) pn] \le e^{-t(1+\theta) pn} [1 + p(e^t - 1)]^n$$

$$\le e^{-t(1+\theta) pn} e^{pn(e^t - 1)}$$

as
$$(1+a)^n \le e^{an}$$
 for all $a > 0$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 409

The Proof (concluded)

• With the choice of $t = \ln(1+\theta)$, the above becomes

$$\operatorname{prob}[X \ge (1+\theta) \, pn] \le e^{pn[\theta - (1+\theta)\ln(1+\theta)]}.$$

• The exponent expands to $-\frac{\theta^2}{2} + \frac{\theta^3}{6} - \frac{\theta^4}{12} + \cdots$ for $0 \le \theta \le 1$, which is less than

$$-\frac{\theta^2}{2} + \frac{\theta^3}{6} \le \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \le \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\frac{\theta^2}{3}.$$

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 408

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Power of the Majority Rule

From prob[$X \le (1-\theta) pn$] $\le e^{-\frac{\theta^2}{2}pn}$ (prove it):

Corollary 66 If $p = (1/2) + \epsilon$ for some $0 \le \epsilon \le 1/2$, then

$$\operatorname{prob}\left[\sum_{i=1}^{n} x_i \le n/2\right] \le e^{-\epsilon^2 n/2}.$$

- $\bullet\,$ The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 406) hence demands $\approx 1.4k/\epsilon^2$ independent coin flips to guarantee making an error with probability at most 2^{-k} with the majority rule.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 411

BPP^a (Bounded Probabilistic Polynomial)

- The class **BPP** contains all languages for which there is a precise polynomial-time NTM N such that:
 - If $x \in L$, then at least 3/4 of the computation paths of N on x lead to "yes."
 - If $x \notin L$, then at least 3/4 of the computation paths of N on x lead to "no."
- N accepts or rejects by a *clear* majority.

^aGill (1977).

Magic 3/4?

- The number 3/4 bounds the probability of a right answer away from 1/2.
- \bullet Any constant *strictly* between 1/2 and 1 can be used without affecting the class BPP.
- In fact, 0.5 plus any inverse polynomial between 1/2 and 1,

$$0.5 + 1/p(n),$$

can be used.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 413

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1/2) + \epsilon$.

1: **for** $i = 1, 2, \ldots, 2k + 1$ **do**

2: Run N on input x;

3: end for

4: if "yes" is the majority answer then

5: "yes";

6: else

7: "no";

8: end if

Analysis

- The running time remains polynomial, being 2k + 1 times N's running time.
- By Corollary 66 (p. 411), the probability of a false answer is at most $e^{-\epsilon^2 k}$.
- By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most 1/4.
- As with the RP case, ϵ can be any inverse polynomial, because k remains polynomial in n.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 415

Probability Amplification for BPP

- Let *m* be the number of random bits used by a BPP algorithm.
 - By definition, m is polynomial in n.
- With $k = \Theta(\log m)$ in the majority vote algorithm, we can lower the error probability to $\leq (3m)^{-1}$.

Aspects of BPP

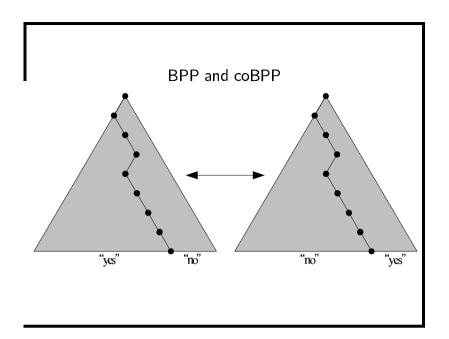
- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.
- $(RP \cup coRP) \subseteq (NP \cup coNP)$.
- $(RP \cup coRP) \subseteq BPP$.
- Whether BPP \subseteq (NP \cup coNP) is unknown.
- But it is unlikely that $NP \subseteq BPP$ (p. 641).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 417

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in BPP$ becomes one for $\bar{L} \in coBPP$ by reversing the answer.
- Hence BPP = coBPP.
- This approach does not work for RP.
- It did not work for NP either.



©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 419

"The Good, the Bad, and the Ugly" ZPP BPP\

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- By identify true with 1 and false with 0, a boolean circuit with n inputs accepts certain strings in $\{0,1\}^n$.
- To relate circuits with arbitrary languages, we need one circuit for each possible input length n.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 421

Formal Definitions

- The **size** of a circuit is the number of *gates* in it.
- A family of circuits is an infinite sequence $\mathcal{C} = (C_0, C_1, \dots)$ of boolean circuits, where C_n has nboolean inputs.
- $L \subseteq \{0,1\}^*$ has **polynomial circuits** if there is a family of circuits C such that:
 - The size of C_n is at most p(n) for some fixed polynomial p.
 - For input $x \in \{0,1\}^*$, $C_{|x|}$ outputs 1 if and only if $x \in L$.
 - * C_n accepts $L \cap \{0,1\}^n$.

Exponential Circuits Contain All Languages

- Theorem 16 (p. 157) implies that there are languages that cannot be solved by circuits of size $2^n/(2n)$.
- But exponential circuits can solve all problems.

Proposition 67 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2} .

• We will show that for any language $L \subseteq \{0,1\}^*$, $L \cap \{0,1\}^n$ can be decided by a circuit of size 2^{n+2} .

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 423

The Proof (concluded)

• Define boolean function $f: \{0,1\}^n \to \{0,1\}$, where

$$f(x_1x_2\cdots x_n) = \begin{cases} 1 & x_1x_2\cdots x_n \in L, \\ 0 & x_1x_2\cdots x_n \notin L. \end{cases}$$

- $f(x_1x_2\cdots x_n)=(x_1\wedge f(1x_2\cdots x_n))\vee (\neg x_1\wedge f(0x_2\cdots x_n)).$
- The circuit size s(n) for $f(x_1x_2\cdots x_n)$ hence satisfies

$$s(n) = 3 + 2s(n-1)$$

with s(1) = 1.

• Solve it to obtain $s(n) = 2^{n+1} + 2^{n-1} - 4$.

The Circuit Complexity of P

Proposition 68 All languages in P have polynomial circuits.

- Let $L \in P$ be decided by a TM in time p(n).
- By Corollary 31 (p. 240), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0,1\}^n$.
- ullet The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 425

Languages That Polynomial Circuits Accept

- Do polynomial circuits accept only languages in P?
- There are *undecidable* languages that have polynomial circuits.
 - Let $L \subseteq \{0,1\}^*$ be an undecidable language.
 - Let $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}.$
 - U must be undecidable.
 - $-U \cap \{1\}^n$ can be accepted by C_n that is trivially false if $1^n \notin U$ and trivially true if $1^n \in U$.
 - The family of circuits (C_0, C_1, \dots) is polynomial in size.

A Patch

- Despite the simplicity of a circuit, the previous discussions imply the following:
 - Circuits are *not* a realistic model of computation.
 - Polynomial circuits are *not* a plausible notion of efficient computation.
- What gives?
- The effective and efficient constructibility of

 C_0, C_1, \ldots

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 427

Page 428

Uniformity

- A family $(C_0, C_1, ...)$ of circuits is **uniform** if there is a $\log n$ -space bounded TM which on input 1^n outputs C_n .
 - Circuits now cannot accept undecidable languages (why?).
 - The circuit family on p. 426 is not constructible by a single Turing machine (algorithm).
- A language has **uniformly polynomial circuits** if there is a *uniform* family of polynomial circuits that decide it.

Uniformly Polynomial Circuits and P

Theorem 69 $L \in P$ if and only if L has uniformly polynomial circuits.

- One direction was proved in Proposition 68 (p. 425).
- \bullet Now suppose L has uniformly polynomial circuits.
- Decide $x \in L$ in polynomial time as follows:
 - Let n = |x|.
 - Build C_n in $\log n$ space, hence polynomial time.
 - Evaluate the circuit with input x in polynomial time.
- Therefore $L \in P$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 429

Relation to P vs. NP

- Theorem 69 implies that P ≠ NP if and only if NP-complete problems have no uniformly polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, *uniformly or not*.
- The above is currently the preferred approach to proving the $P \neq NP$ conjecture—without success so far.
 - Theorem 16 (p. 157) states that there are boolean functions requiring $2^n/(2n)$ gates to compute.
 - In fact, almost all boolean functions do.

BPP's Circuit Complexity

Theorem 70 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be *nonconstructive* in that only the existence of the desired circuits is shown.
 - Something exists if its probability of existence is nonzero.
- How to efficiently generate circuit C_n given 1^n is not known.
- If the construction of C_n is efficient, then P = BPP, an unlikely result.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 431

The Proof

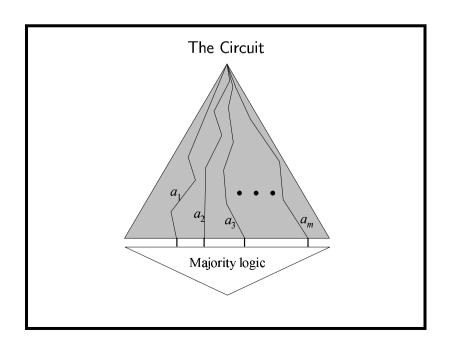
- Let $L \in BPP$ be decided by a precise NTM N by clear majority.
- We shall prove that L has polynomial circuits C_0, C_1, \ldots
- Suppose N runs in time p(n), where p(n) is a polynomial.
- Let $A_n = \{a_1, a_2, \dots, a_m\}$, where $a_i \in \{0, 1\}^{p(n)}$.
- Let m = 12(n+1).
- Each $a_i \in A_n$ represents a sequence of nondeterministic choices—i.e., a computation path—for N.

The Proof (continued)

- Let x be an input with |x| = n.
- Circuit C_n simulates N on x with each sequence of choices in A_n and then takes the majority of the m outcomes.
- Because N with a_i is a polynomial-time TM, it can be simulated by polynomial circuits of size $O(p(n)^2)$.
 - See the proof of Proposition 68 (p. 425).
- The size of C_n is therefore $O([mp(n)]^2) = O(n^2p(n)^2)$, a polynomial.
- We next prove the existence of A_n making C_n correct.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 433



The Proof (continued)

- Call a_i bad if it leads N to a false positive or a false negative answer.
- Select A_n uniformly randomly.
- For each $x \in \{0,1\}^n$, 1/4 of the computations of N are erroneous.
- Because the sequences in A_n are chosen randomly and independently, the expected number of bad a_i 's is m/4.
- By the Chernoff bound (p. 407), the probability that the number of bad a_i 's is m/2 or more is at most

$$e^{-m/12} < 2^{-(n+1)}$$
.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 435

The Proof (concluded)

- The error probability is $< 2^{-(n+1)}$ for each $x \in \{0,1\}^n$.
- The probability that there is an x such that A_n results in an incorrect answer is $< 2^n 2^{-(n+1)} = 2^{-1}$.
 - $-\operatorname{prob}[A \cup B \cup \cdots] \leq \operatorname{prob}[A] + \operatorname{prob}[B] + \cdots$
- So with probability one half, a random A_n produces a correct C_n for all inputs of length n.
- Because this probability exceeds 0, an A_n that makes majority vote work for all inputs of length n exists.
- Hence a correct C_n exists.

Cryptographya

- Alice (A) wants to send a message to **Bob** (B) over a channel monitored by **Eve** (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is **cryptography**.

a "Whoever wishes to keep a secret must hide the fact that he possesses one." — Johann Wolfgang von Goethe (1749–1832).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 437

Encryption and Decryption

- Alice and Bob agree on two algorithms *E* and *D*—the encryption and the decryption algorithms.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- \bullet Bob operates D.
- Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.
- Alice sends y = E(e, x) to Bob, who then performs D(d, y) = x to recover x.
- x is called **plaintext**, and y is called **ciphertext**.

Some Requirements

- D should be an inverse of E given e and d.
- ullet D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover y from x without knowing d.
 - As D is public, d must be kept secret.
 - -e may or may not be a secret.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 439

Degrees of Security

- **Perfect secrecy**: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
- Such systems are said to be **informationally secure**.
- A system is **computationally secure** if breaking it is theoretically possible, just computationally infeasible.