Randomized Algorithms®
e Randomized algorithms flip unbiased coins. A Perfect Matching
e There are important problems for which there are no “ Vi
known efficient deterministic algorithms but for which
very efficient randomized algorithms exist. u, ® * v,
— Extraction of square roots, for instance.
e There are problems where randomization is necessary. L V3
— Secure protocols.
e Randomized version can be more efficient. Ya Vs
— Parallel algorithm for maximal independent set.
e Are randomized algorithms algorithms? “ "
aRabin (1976), Solovay and Strassen (1977).
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Bipartite Perfect Matching Symbolic Determinants
e We are given a bipartite graph G = (U,V, E). e Given a bipartite graph G, construct the n x n matrix

G . . G . . L
— U = {us,uz, ... ,un}. A% whose (i, j)th entry A7 is a variable z;; if

(ui,v;) € E and zero otherwise.
—V:{vl,vg,...,vn}. v

_ECUxV. e The determinant of A% is
e We are asked if there is a perfect matching. det(A%) = ZU(W) H AiGW(Z.)_ (5)
— A permutation 7 of {1,2,... ,n} such that ” i=1

— 7 ranges over all permutations of n elements.
(uia Ur(i)) €k . . .
— o(m) is 1 if 7 is the product of an even number of

for all u; € U. transpositions and —1 otherwise.
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Determinant and Bipartite Perfect Matching
eIn) o(m)][i, Afw(i), note the following:

— Each summand corresponds to a possible prefect
matching 7.

— As all variables appear only once, all of these
summands are different monomials and will not

cancel.
e It is essentially an exhaustive enumeration.

Proposition 56 (Edmonds (1967)) G has a perfect
matching if and only if det(A®) is not identically zero.
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A Perfect Matching in a Bipartite Graph
U Vi
u2 L g ' V2
Uy V3
U, Vy
u5 V3
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The Perfect Matching in the Determinant

e The matrix is

[ 0 0 Z13 T14 0 ]
0 0 0 0
A= 25 0 0 0 [3s
T41 0 43 T4q 0
RES! 0 0 0 Tss |
o det(AC) = —@14%022235043T51 + L13T22T35T4aTs1 +

T14T22731243%55 — T13T22T31T44T55, €ach denoting a
perfect matching.
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How To Test If a Polynomial Is Identically Zero?

2

e det(A%) is a polynomial in n? variables.

e There are exponentially many terms in det(A%).

e Expanding the determinant polynomial is not feasible.
— Too many terms.
e Observation: If det(A®) is identically zero, then it

remains zero if we substitute arbitrary integers for the

variables £11,... , Znn.

e What is the likelihood of obtaining a zero when det(A%)
is not identically zero?
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Number of Roots of a Polynomials

Lemma 57 (Schwartz (1980)) Let p(z1,22,... ,Zm) Z0
be a polynomial in m variables each of degree at most d. Let
M € Z*. Then the number of m-tuples

(x1,22,... ,2m) €4{0,1,... .M —1}™
such that p(x1,x2,... ,&m) =0 is
< mdM™ L.

e By induction on m.

A Randomized Bipartite Perfect Matching Algorithm?®

1: Choose n? integers i1y, ... ,in, from {0,1,... ,b— 1}
randomly;

1: Calculate det(A% (411, ... ,inn)) by Gaussian elimination;

2: if det(A%(i11,. .. ,inn)) # 0 then

3: return “G has a perfect matching”;

4: else

5:  return “G has no perfect matchings”;

6: end if

aLovasz (1979).
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Density Attack
e The density of roots in the domain is at most

mdM™ 1 md

Mm M’
e A sampling algorithm to test if p(z1,za,... ,Zm) Z 0.
: Choose 1, ... , %y, from {0,1,... , M — 1} randomly;
. if p(il,’ig, “e ,Zm) # 0 then
return “p is not identically zero”;

return “p is identically zero”;

1
2
3
4: else
5
6: end if
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Analysis
e Pick b = 2n?.
e If G has no perfect matchings, the algorithm will always
be correct.

e Suppose G has a perfect matching.

— The algorithm will answer incorrectly with
probability at most n2d/b = 0.5 because d = 1.

— Run the algorithm independently k times and output
“G has no perfect matchings” if they all say no.

— The error probability is now reduced to at most 27%.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 368

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 370




Monte Carlo Algorithms?
e The randomized bipartite perfect matching algorithm is
called a Monte Carlo algorithm in the sense that
— If the algorithm finds that a matching exists, it is
always correct (no false positives).
— If the algorithm answers in the negative, then it may
make an error (false negative).

e The algorithm makes a false negative with probability
<0.5.

e This probability is not over the space of all graphs or
determinants, but over the algorithm’s own coin flips.

— It holds for any bipartite graph.
aMetropolis and Ulam (1949).

An Application of Markov's Inequality

e Algorithm C runs in expected time T'(n) and always
gives the right answer.

e Consider an algorithm that runs C for time kT'(n) and
rejects the input if C' does not stop within the time
bound.

e By Markov’s inequality, this new algorithm runs in time
kT (n) and gives the wrong answer with probability
< 1/k.

e By running this algorithm m times, we reduce the error
probability to < k™.
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The Markov Inequality®

Lemma 58 Let x be a random variable taking nonnegative
integer values. Then for any k > 0,

prob[z > kE[z]] < 1/k.

e Let p; denote the probability that x = 1.

Elz] = lez
= Z ip; + Z ip;

i<kE[z] i>kE[z]
> kE[z] x prob[z > kE[z]].

@ Andrei Andreyevich Markov (1856-1922).

An Application of Markov's Inequality (concluded)

e Suppose, instead, we run the algorithm for the same
running time mkT (n) and rejects the input if it does not
stop within the time bound.

e By Markov’s inequality, this new algorithm gives the
wrong answer with probability < 1/(mk).

e This is a far cry from the previous algorithm’s error

probability of < k™.

e The loss comes from the fact that Markov’s inequality
does not take advantage of any specific feature of the

random variable.
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Analysis

e Suppose N = P(Q, a product of 2 primes.
Primality Tests e The probability of success is
e PRIMES asks if a number N is a prime. <1-— ¢(N) —1— (P-1)(Q-1) _ P+Q— 1_
N PQ PQ

e The classic algorithm tests if k| N for k =2,3,... ,v/N.
e In the case where P = @), this probability becomes

i, 12
P Q VYN

This probability is exponentially small.

e But it runs in Q(2"/2) steps, where n = | N | = log, N.
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The Fermat Test for Primality

e Fermat’s “little” theorem on p. 341 suggests the

. following primality test for any given number p:
The Density Attack for PRIMES

Pick k € {2,... ,N — 1} randomly; {Assume N > 2.}

if k| N then
return “N is a composite”; — Otherwise, declare “N is probably prime.”

— Pick a number a randomly from {1,2,... ,N — 1}.
— If a™ ! # 1 mod N, then declare “N is composite.”

else e Unfortunately, there are composite numbers called

return “N is a prime”; Carmichael numbers that will pass the Fermat test

end if for all a € {1,2,... ,N —1}.

e There are infinitely many Carmichael numbers.?

aAlford, Granville, and Pomerance (1992).
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Square Roots Modulo a Prime

The Proof (concluded
e Equation 22 = a mod p has at most two (distinct) roots ( )

by Lemma 55 on p. 343. e If a = 7% then a®1/2 = pi(»=1) = 1 mod p and its two

— The roots are called square roots. distinet roots are 7, —rJ (= r/T(P=1/2),

— Numbers a with square roots and ged(a,p) = 1 are e Since there are (p — 1)/2 such a’s, and each such a has
called quadratic residues. two distinct roots, we have run out of square roots.
* They are 12 mod p,22 mod p,...,(p — 1)% mod p. —{c:? =amodp}={1,2,...,p—1}.
e We shall show that a number either has two roots or has e If a = r¥*! then it has no roots because all the square
none, and testing which is true is trivial. roots have taken.
e But there are no known efficient deterministic o aP=1)/2 = [p(P=1)/2)2741 = (_1)2+! = _1 mod p.

algorithms to find the roots.
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Euler's Test The Legendre Symbol® and Quadratic Residuacity Test

—1)/2 —
Lemma 59 (Euler) Let p be an odd prime and * S0 a®=1/2 mod p = +1 for a # 0 mod p.

a # 0 mod p. e For odd prime p, define the Legendre symbol (a|p) as
1. If a®»=Y/2 = 1 mod p, then 22> = a mod p has two roots. 0 ifpla
2. If alP=1/2 £ 1 mod p, then a®=/2 = —1 mod p and (a|]p) =4 1 ifaisa quadratic residue modulo p
2% = a mod p has no roots. —1 if a is a quadratic nonresidue modulo p

e Let r be a primitive root of p. e Euler’s test implies a?~1/2 = (a|p) mod p for any odd

e By Fermat’s “little” theorem, r(P~1)/2 ig a square root of prime p and any integer a.
—1)/2 _
1, so r®=1/2 = +1 mod p. e Note that (ablp) = (a|p)(b|p).
e But as r is a primitive root, rP=1)/2 = —1 mod p. 2 Andrien-Marie Legendre (1752-1833).
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Gauss's Lemma

Lemma 60 (Gauss) Let p and q be two odd primes. Then
(qlp) = (—1)™, where m is the number of residues in
R={igmodp:1<i<(p—1)/2} that are greater than
(p—1)/2.
e All residues in R are distinct.
— If ig = jg mod p, then p|(j — 4) g or plg.
e No two elements of R add up to p.
— If iqg + jq = 0 mod p, then p|(i + j) q or p|q.
e Consider the set R’ of residues that result from R if we
replace each of the m elements a € R, where

a>(p—1)/2, by p—a.
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The Proof (concluded)
e All residues in R’ are now at most (p — 1)/2.
e In fact, R ={1,2,...,(p—1)/2}.
— Otherwise, two elements of R would add up to p.

e Alternatively, R’ = {xigmodp:1<i< (p—1)/2},
where exactly m of the elements have the minus sign.

e Take the product of all elements in the two
representations of R’.

o So[(p—1)/2t = (-1)"q® V/%[(p — 1)/2]! mod p.

e Because ged([(p — 1)/2]!, p) = 1, the lemma follows.

Legendre's Law of Quadratic Reciprocity®
e Let p and g be two odd primes.

e Then their Legendre symbols are identical unless both
numbers are 3 mod 4.

Lemma 61 (Legendre (1785), Gauss)
p=1a-1

(plg)(glp) = (-1)= "= .

e Sum the elements of R’ in the previous proof in mod?2.

e On one hand, this is just Zgi{l)ﬂi mod 2.

2First stated by Euler in 1751. Legendre (1785) did not give a correct
proof. Gauss proved the theorem when he was 19. He gave at least 6
different proofs during his life. The 152nd proof appeared in 1963.
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The Proof (continued)

e On the other hand, the sum equals

(p—1)/2 ;
Z (qi—p{qJ)—l—mpmod2
p

i=1
(p—-1)/2 (p—1)/2

= q Z 1—Dp Z {%J -+ mp mod 2.
i=1

=1
— Signs are irrelevant under mod?2.

— m is as in Lemma 60 (p. 383).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 384

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 386




The Proof (continued)

e After ignoring odd multipliers and noting that the first

term above equals 3P 71/24:
(r=1)/2 .
m=3 |

ﬂJ mod 2.
p

=1

. Z(.’;_ll)/z [%’j is the number of positive integral points in

the p_;1 X %1 rectangle that are under the line between
(0,0) and the point (p, q).
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The Proof (concluded)
e From Gauss’s lemma on p. 383, (¢|p) is (—1)™.
e Repeat the proof with p and g reversed.

e We obtain (p|q) is —1 raised to the number of positive
integral points in the ”;21 X qg—l rectangle that are above
the line between (0,0) and the point (p, q).

e So (p|q)(q|p) is —1 raised to the total number of integral

: : p—1 g—1 : «. p—1 g—1
points in the 5= x 45— rectangle, which is 55~ 4.

Eisenstein’'s Rectangle
-9
[} [ ] [ ] [ ]
[} [ ] [ ] [
[ J [} [ ] [ ] [ ]
p=11and ¢=171.
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The Jacobi Symbol?

The Legendre symbol only works for odd prime moduli.

The Jacobi symbol (a | m) extends it to cases where m

is not prime.

Let m = p1p2 - - - px. be the prime factorization of m.

e When m > 1 is odd and ged(a,m) = 1, then
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k
(alm) = [ [ (al p0).
i=1
e Define (a|1) = 1.
aCarl Jacobi (1804-1851).
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Properties of the Jacobi Symbol The Jacobi Symbol and Primality Test?

The Jacobi symbol has the following properties, for A result generalizing Proposition 10.3 in the book:

f hich it is defined. C
arguments for which 1t 1s define Theorem 62 The group of set ®(n) under multiplication

1. (ab|m) = (a|m)(b]|m). mod n has a primitive root if and only if n is either 1, 2, 4,
k

2pk ve i
2. (a|mims) = (a|m1)(a|ms). p", or 2p" for some nonnegative integer k and and odd

prime p.
3. If a = b mod m, then (a|m) = (b|m).
This result is essential in the proof of the next lemma.
4. (=1|m) = (=1)(m=1/2 (by Lemma 60 on p. 383).
1)) Lemma 63 If (M|N) = MW =Y/2mod N for all
_ —-1)/8
5. (2|m) = (=1)'" (by Lemma 60 on p. 383). M € ®(N), then N is prime. (Assume N is odd.)
6. If a and m are both odd, then 2Clement Hsiao (R88067) pointed out that the textbook’s proof in
(alm)(m|a) = (—1)('171)(7"71)/4. Lemma 11.8 is incorrect while he was a senior in January 1999.
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Calculation of (2200[999)
Similar to the Euclidean algorithm and does not require The Number of Witnesses to Com positeness
factorization.
(9997—1) 8 Theorem 64 (Solovay and Strassen (1977)) If N is an
(202/999) = (-1) (101/999) odd composite, then (M|N) # M®=1/2 mod N for at least
— (~1)""(101]999) = (101/999) half of M € B(N).
= (—1)10009%)/%(999|101) = (—1)**9°°(999|101
(=1 (999]101) = ( )2 (999]101) e By Lemma 63 there is at least one a € ®(N) such that
= (999[101) = (90]101) = (1) V"% (45101) (alN) # a®=1/2 mod N.
= (—1)"""(45/101) = —(45|101)

o Let B ={by,bs,...,bx} C ®(N) be the set of all distinct

—  _(_1)(44)(100)/4 - _ - _ .
= -1 (101[45) (101]45) (11]45) residues such that (b;|N) = ng U2 mod N.

—(—1)10UN/ 4 (45111) = —(45]11)

_ QD) = —(1f1) = —1 e Let aB={ab;mod N :i=1,2,... k}.
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The Proof (concluded)
e |aB| =k.

— ab; = abj mod N implies N|a(b; — b;), which is
impossible because ged(a, N) =1 and N > |b; — b;].

e aBN B = () because

(abi) N 7172 = gNTD2PNTII2 24 (4| NY (i | N) = (abi] N).

e Combining the above two results, we know

1Bl o5
¢(N) =

Analysis

The algorithm certainly runs in polynomial time.

There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is a composite,
it is always correct.

The probability of a false negative is at most one half.

— When the algorithm says the number is a prime, it
may err.

— If the input is a composite, then the probability that
the algorithm errs is one half.

e The error probability can be reduced but not eliminated.
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1: if N is even but N # 2 then

2:  return “N is a composite”;

3: else if N =2 then

4: return “N is a prime”;

5: end if

6: Pick M € {2,3,... ,N — 1} randomly;
7: if gcd(M,N) > 1 then

8: return “N is a composite”;

9: else
10:  if (M|N) # M®"~Y/2 mod N then
11: return “N is a composite”;
12: else
13: return “N is a prime”;
14: end if
15: end if

The Improved Density Attack for COMPOSITENESS

Witnesses to ’
Witnesses to

compositeness of :
N via common compositeness of
factor N via Jacobi
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