Set-Related Problems

e We are given a family F = {S1,52,...,S,} of subsets of
a finite set U and a budget B.

e SET COVERING asks if there exists a set of B sets in F'
whose union is U.

e SET PACKING asks if there are B disjoint sets in F'.
e Assume |U| = 3m for some m € N and |S;| = 3 for all 1.

e EXACT COVER BY 3-SETS asks if there are m sets in F
that are disjoint and have U as their union.

Corollary 43 SET COVERING, SET PACKING, and EXACT
COVER BY 3-SETS are all NP-complete.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 307

SET COVERING SET PACKING

The KNAPSACK Problem

There is a set of n items.

e Item ¢ has value v; € Z1T and weight w; € Z*.

e We are given K € ZT and W € Z™.

e KNAPSACK asks if there exists a subset S C {1,2,... ,n}
such that), qw; < W and), gv; > K.
— We want to achieve the maximum satisfaction within
the budget.
@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 309

KNAPSACK Is NP-Complete
e KNAPSACK € NP: Guess an S and verify the constraints.
e We assume v; = w; for all and K = W.

e KNAPSACK now asks if a subset of {wq,ws, ... ,w,} adds
up to exactly K.
— Picture yourself as a radio DJ.

— Or a person trying to control the calories intake.

e We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 308

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 310

The Proof (continued)

e We are given a family F = {S1,85s,...,S,} of size-3
subsets of U = {1,2,... ,3m}.

e EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.
e Think of a set as a bit vector in {0,1}3™.

— 001100010 means the set {3,4, 8}, and 110010000
means the set {1,2,5}.

3m
. =
e QOur goal is 11---1.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 311

The Proof (continued)

e A bit vector can also be considered as a binary number.

e Set union resembles addition.
— 001100010 + 110010000 = 111110010, which denotes
the set {1, 2,3,4,5,8}, as desired.
e Trouble occurs when there is carry.

— 001100010 + 001110000 = 010010010, which denotes
the set {2,5,8}, not the desired {3,4,5,8}.

The Proof (continued)

e Carry may also lead to a situation where we obtain our
solution 11---1 with more than m sets in F.
— 001100010 + 001110000 + 101100000 + 000001101 =
111111111,
— But this “solution” {1,3,4,5,6,7,8,9} does not
correspond to an exact cover.

— And it uses 4 sets instead of the required 3.?

e To fix this problem, we enlarge the base just enough so
that there are no carries.

e Because there are n vectors in total, we change the base
from 2 to n + 1.

2Thanks to a lively class discussion on November 20, 2002.

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 313

The Proof (continued)

e Set v; to be the (n + 1)-ary number corresponding to the
bit vector encoding S;.

e Now in base n + 1, if there is a set S such that
3m
} . o .
Mus.mm v; = 11---1, then every bit position must be

contributed by exactly one v; and |S| = m.

e Finally, set

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 312

3m
3m—1
< N ulha
K= M (n+1) =11---1 (base n+1).
=0
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 314

The Proof (concluded)

Suppose F admits an exact cover, say {S1,52,...,5m}-

Then picking S = {v1,vs,...,vy} clearly results in

3m
—
\CHI_I\CMIT...ITGSHHH_....H.

On the other hand, suppose there exists an S such that
3m
——
Y vies Vi = 11---1 in base n + 1.

The no-carry property implies that |S| = m and
{S; : v; € S} is an exact cover.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 315

BIN PACKINGS

e We are given N positive integers a1, as,... ,ay, an
integer C (the capacity), and an integer B (the number
of bins).

e BIN PACKING agks if these numbers can be partitioned
into B subsets, each of which has total sum at most C.

e Think of packing bags at the check-out counter.

Theorem 44 BIN PACKING is NP-complete.

INTEGER PROGRAMMING Is NP-Complete?

e INTEGER PROGRAMMING asks whether a system of linear
inequalities with integer coefficients has an integer
solution.

e Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

— SET COVERING can be expressed by the inequalities
Az > T, Yoz <B,0<gz <1, where
% x; is one if and only if S; is in the cover.
x A is the matrix whose columns are the bit vectors
of the sets 51,53, .

* 1 is the vector of 1s.

2Papadimitriou (1981).

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 317

coNP

e NP is the class of problems that have succinct
certificates (recall Proposition 34 on p. 250).

e coNP is the class of problems that have succinct
disqualifications:

— A “no” instance of a problem in coNP possesses a
short proof of its being a “no” instance.

— Only “no” instances have such proofs.
e (learly P C coNP.

e It is not known if P = NP N coNP.
— Contrast this with R = RE N coRE.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 316

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 318

Some coNP Problems

coNP as Decision Problems
e VALIDITY € coNP.
— If ¢ is not valid, it can be disqualified very succinctly:

e Suppose L is a coNP problem.
a truth assignment that does not satisfy it.

e There exists a polynomial-time nondeterministic
algorithm M such that:
— If z € L, then M(z) = “yes” for all computation

® SAT COMPLEMENT € coNP.
— The disqualification is a truth assignment that

satisfies it.

paths.
— Ifz & L, then M(z) = “no” for some computation
path e HAMILTONIAN PATH COMPLEMENT € coNP.
— The disqualification is a Hamiltonian path.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 319 @©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 321

An Alternative Characterization of coNP

Proposition 45 Let L C ¥* be a language. Then L € coNP
if and only if there is a polynomially decidable and
polynomially balanced relation R such that

L ={z:Vy(z,y) € R}.

xUOL xUOL

O
yes yes no yes B
o L ={z:(z,y) € -R for some y}.
yes yes B
e Because — R remains polynomially balanced, L € NP by
yes yes no yes .
Proposition 34 (p. 250).

e Hence L € coNP by definition.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 320 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 322

coNP Completeness

Proposition 46 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the < part is symmetric)
e Let L’ be any coNP language.
e Hence L' € NP.

Let R be the reduction from L' to L.

e Soz € L' if and only if R(z) € L.

So z € L’ if and only if R(z) € L.

R is a reduction from L’ to L.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 323

Possible Relations between P, NP, coNP
e P = NP = coNP.
¢ NP = coNP but P # NP.
e NP # coNP and P # NP (current “consensus”).

Some coNP-Complete Problems

e SAT COMPLEMENT is coNP-complete.

— SAT COMPLEMENT is the complement of SAT.
e VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.

— The reduction from SAT COMPLEMENT to VALIDITY
is hence easy.

e HAMILTONIAN PATH COMPLEMENT is coNP-complete.

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 325

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 324

The Primality Problem

e An integer p is prime if p > 1 and all positive numbers
other than 1 and p itself cannot divide it.

e PRIMES asks if an integer N is a prime number.

e Dividing N by 2,3,...,VN is not efficient.
— The length of N is only log N, but /N = 20-5lg N,

e A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxena!

e We will focus on efficient “probabilistic” algorithms for
PRIMES (used in Mathematica, e.g.).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 326

Primitive Roots in Finite Fields

Theorem 47 (Lucas and Lehmer (1927)) & A number
p > 1 4s prime if and only if there is a number 1 <r <p
(called the primitive root or generator) such that

1. P~ =1 mod p, and
2. r®=D/9 £ 1 mod p for all prime divisors q of p — 1.

e The above theorem can be used to test efficiently primes
of the form 2™ 4 1.

e We will prove the theorem later.

2Frangois Edouard Anatole Lucas (1842-1891); Derrick Henry
Lehmer (1905-1991).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 327

Pratt’s Theorem
Theorem 48 (Pratt (1975)) PRIMES € NP coNP.

e PRIMES is in coNP because a succinct disqualification is

a divisor.
e Suppose p is a prime.
e p’s certificate includes the r in Theorem 47 (p. 327).

e Use recursive doubling to check if 7»~! = 1 mod p in
time polynomial in the length of the input, log, p.

e We also need all prime divisors of p — 1: ¢1,q2, ..., qk.

e Checking r(P=1)/% +£ 1 mod p is also easy.

The Proof (concluded)

Checking q1, g2, ... ,qx are all the divisors of p — 1 is
casy.

We still need certificates for the primality of the g¢;’s.

The complete certificate is recursive and tree-like:

C(p) = (r;q1,C(q1), 2, Cla2), - -+ s ar, Clar)).

C(p) can also be checked in polynomial time.

We next prove that C(p) is succinct.

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 329

The Succinctness of the Certificate
Lemma 49 The length of C(p) is at most quadratic at
5logs p.
e This claim holds when p = 2 or p = 3.

e In general, p — 1 has k < log, p prime divisors
q1 = M“Qwu... s Ak -

e (C(p) requires: 2 parentheses and 2k < 2log, p separators
(length at most 2log, p long), r (length at most log, p),
¢1 = 2 and its certificate 1 (length at most 5 bits), the
¢i’s (length at most 2log, p), and the C(g;)s.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 328

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 330

The Proof (concluded) Euler’s® Totient or Phi Function

e C(p) is succinct because o Let
k ®(n) ={m:1<m<n,ged(m,n) =1}
C(p)] < blogyp+5+5Y logig
C@) ? m 2 be the set of all positive integers less than n that are
k 2 prime to n (Z; is a more popular notation).
< 5logop+5+5(Y logsa; — 3(12) = {1,5,7,11}.
=2
—1 e Define Euler’s function of n to be ¢(n) = |®(n)|.
< m_omm@._.m.Tm_omw@w (n) = |®(n)]

) e ¢(p) =p —1 for prime p, and ¢(1) = 1 by convention.
< blogyp+5+5(logyp —1)

5logs p+ 10 — 5log, p < 5log?p e Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

for p > 4. 2Leonhard Euler (1707-1783).
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 331 @©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 333
eulerphi.nb
Basic Modular Arithmetics?
e Let m,n € Z". ¢ (n)
500
e m|n means m divides n and m is n’s divisor.
e We call the numbers 0,1,... ,n — 1 the residue modulo 400
n.
300
e The greatest common divisor of m and n is denoted
ged(m, n). 200
e The 7 in Theorem 47 (p. 327) is a primitive root of p. 100
e We now prove the existence of primitive roots and then
Theorem 47. n
2Carl Friedrich Gauss (1777-1855).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 332 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 334

Two Properties of Euler’'s Function

a

The inclusion-exclusion principle? can be used to prove the

following.
Lemma 50 ¢(n) =n][,,(1- wv

o If n=p{'p3?---p;i* is the prime factorization of n, then

ﬁsnzmAT%v.

Corollary 51 ¢(mn) = ¢(m)p(n) if ged(m,n) = 1.

aSee my Discrete Mathematics lecture notes.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 335

The Proof (concluded)
e By Corollary 51 (p. 335),

14

l
S&QWV =¢ EP@.
i=1

=1

1 K, . . - Vi .
e Each [[_, p;" is a unique divisor of n = [[;_, p.

e Equation (4) becomes

> ¢(m).

m|n

A Key Lemma
Lemma 52 3, ¢(m)=n.

e Let EMHH %M.: be the prime factorization of n and consider

¢
[T16) +6i) + -+ o5 (4)
i=1
e Equation (4) equals n because ¢(pF) = pf — pF=! by
Lemma 50.

. %
e Expand Eq. (4) to yield Muimf?.}mAE ZMHH d(p;?).

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 337

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 336

The Density Attack for PRIMES

All numbers<n

compositeness
of n

e It works, but does it work well?

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 338

Factorization and Euler’s Function

e The ratio of numbers < n relatively prime to n is

$(n)/n.
e When n = pq, where p and ¢ are distinct primes,
—p— 1 1 1
¢(n) _pa—p—q+1_, 1 1
n pq q D

— The “density attack” to factor n = pq hence takes
Q(y/n) steps on average when p ~ g = O(y/n).

— This running time is exponential: (20-510827).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 339

Fermat’s “Little” Theorem?®
Lemma 53 For all 0 < a < p, a?~ ' =1 mod p.
e Consider a®(p) = {am mod p : m € &(p)}.
e a®(p) = 2(p).

— Suppose am = am’ mod p for m > m’, where
m,m’ € ®(p).

— That means a(m — m') = 0 mod p, and p divides a or
m — m’, which is impossible.

e Hence (p— 1)! =a? (p — 1)! mod p.

e Finally, a? ! = 1 mod p because p f(p — 1)!.

aPierre de Fermat (1601-1665).

The Chinese Remainder Theorem

e Let n =mnyng - ng, where n; are pairwise relatively

prime.
e For any integers a1, as,... ,ak, the set of simultaneous
equations
r = a3 modny,
T = a9 mod ng,
r = ap mod ng,

has a unique solution modulo n for the unknown z.

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 341

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 340

The Fermat-Euler Theorem
Corollary 54 For all a € ®(n), a®™ =1 mod n.

o As 12 =22 x 3,

$(12) =12 x ATWV Avan»

e In fact, ®(12) = {1,5,7,11}.
e For example,

5% = 625 = 1 mod 12.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 342

Exponents

e The exponent of m € ®(p) is the least k € Z* such that
mF =1 mod p.

e Every residue s € ®(p) has an exponent.

— 1,s,8%,s3,... eventually repeats itself, say

s* = s7 mod p, which means s/~¢ = 1 mod p.
e If the exponent of m is k and m® = 1 mod p, then k|{.

— Otherwise, £ = gk + a for 0 < a < k, and
mf = ma*+2% = m2 = 1 mod p, a contradiction.

Lemma 55 Any nonzero polynomial of degree k has at most
k distinct roots modulo p.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 343

Exponents and Primitive Roots
e From Fermat’s “little” theorem, all exponents divide
p—1.
e A primitive root of p is thus a number with exponent
p—1.

e Let R(k) denote the total number of residues in ®(p)
that have exponent k.

e We already knew that R(k) =0 for k& f(p — 1).

® S0 > 1) B(k) =p—1 as every number has an

exponent.

Size of R(k)
e Any a € ®(p) of exponent k satisfies zF = 1 mod p.

e Hence there are at most k residues of exponent k, i.e.,
R(k) < k, by Lemma 55 on p. 343.
e Let s be a residue of exponent k.

o 1,552, ... ,s* 1 are all distinct modulo p.
— Otherwise, s* = s/ mod p with ¢ < j and s is of
exponent j — i < k, a contradiction.

e As all these k distinct numbers satisfy ¥ = 1 mod p,
they are all the solutions of ¥ = 1 mod p.

e But do all of them have exponent & (i.e., R(k) = k)?

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 345

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 344

Size of R(k) (continued)
e And if not (i.e., R(k) < k), how many of them do?
e Suppose £ < k and £ ¢ ®(k) with ged(¢, k) =d > 1.
e Then
(s9)%/4 =1 mod p.
e Therefore, s* has exponent at most k/d, which is less
than k.

e We conclude that

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 346

Size of R(k) (concluded)

e Because all p — 1 residues have an exponent,

p—1= Y Rk)< Y, ¢k)y=p-1
)

k|(p—1) kl(p—1
by Lemma 51 on p. 335.
e Hence
¢(k) when k|(p— 1)

0 otherwise

R(k) =

e In particular, R(p — 1) = ¢(p — 1) > 0, and p has at least
one primitive root.

e This proves one direction of Theorem 47 (p. 327).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 347

A Few Calculations
o Let p=13.
e From p. 342, we know ¢(p — 1) = 4.
e Hence R(12) = 4.
e And there are 4 primitives roots of p.

e As ®(p—1) ={1,5,7,11}, the primitive roots are
g', g%, g7, g' for any primitive root g.

The Other Direction of Theorem 47 (p. 327)
e Suppose p is not a prime.
e We proceed to show that no primitive roots exist.
e Suppose r is a primitive root.

e Suppose 7P~ = 1 mod p, the 1st condition of the
primitive root on p. 327 (note ged(r,p) = 1).

e We will show that the 2nd condition must be violated.
e 7?(P) = 1 mod p by the Fermat-Euler theorem (p. 342).

e Because p is not a prime, ¢(p) < p — 1.

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 349

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 348

The Other Direction of Theorem 47 (concluded)
e Let k be the smallest integer such that ¥ = 1 mod p.
e Ask<¢(p),k<p—1.

e Let g be a prime divisor of (p — 1)/k > 1.

e Then k|(p—1)/q.

e Therefore, by virtue of the definition of &,
rP=1/9 = 1 mod p.

e But this violates the 2nd condition of the primitive root
on p. 327.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 350

Function Problems

e Decisions problem are yes/no problems (SAT, TSP (D),
etc.).

e Function problems require a solution (a satisfying
truth assignment, a best TSP tour, etc.).

e Optimization problems are clearly function problems.

e What is the relation between function and decision
problems?

e Which one is harder?

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 351

Function Problems Cannot Be Easier than Decision
Problems

e If we know how to generate a solution, we can solve the
corresponding decision problem.

— If you can find a satisfying truth assignment
efficiently, then SAT is in P.

— If you can find the best TSP tour efficiently, then TSP
(D) is in P.

e But decision problems can be as hard as the
corresponding function problems.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 352

FSAT

e FSAT is this function problem:
— Let ¢(z1,x2,...,%,) be a boolean expression.

— If ¢ is satisfiable, then return a satisfying truth

assignment.

— Otherwise, return “no.”

e We next show that if SAT € P, then FSAT has a
polynomial-time algorithm.

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 353

An Algorithm for FSAT Using SAT
ti=¢;
if ¢ € sAT then
fori=1,2,... ,ndo
if ¢[z; = true] € SAT then
t:=tU{z; = truel;
¢ = ¢[z; = truel;
else
t:=tU{z; = false};
¢ = ¢[z; = false];
end if
end for

==
N = O

return ¢;

—_
@

else

-
=

return “no”;
end if

—_
o

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 354

Analysis
There are < 2n calls to the algorithm for SAT.

Shorter boolean expressions than ¢ are used in each call
to the algorithm for sAT.

So if SAT can be solved in polynomial time, so can FSAT.

Hence SAT and FSAT are equally hard (or easy).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 355

[y

An Algorithm for Tsp Using TSP (D)
: Perform a binary search over interval [0, 2/?!] by calling
TSP (D) to obtain the shortest distance C;
: fori,j=1,2,... ,ndo
Call Tsp (D) with B =C and d;; = C + 1;
if “no” then
Restore d;; to old value; {Edge [i,7] is critical.}
end if
end for
return the tour with edges whose d;; < C;

TSP and TSP (D) Revisited

We are given n cities 1,2, ... ,n and integer distances
d;; = dj; between any two cities ¢ and j.

The TSP asks for a tour with the shortest total distance
(not just the shortest total distance, as earlier).

x|

— The answer must be at most 2/¢!, where z is the

input.

TSP (D) asks if there is a tour with a total distance at
most B.

We next show that if TSP (D) € P, then TSP has a
polynomial-time algorithm.

@©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 357

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 356

Analysis

An edge that is not on any optimal tour will be
eliminated, with its d;; set to C' + 1.

An edge which is not on all remaining optimal tours will
also be eliminated.

So the algorithm ends with n edges which are not

eliminated.
There are O(| z | +n?) calls to the algorithm for TsP (D).

So if TsP (D) can be solved in polynomial time, so can
TSP.

e Hence TSP (D) and TSP are equally hard (or easy).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 358

