MAX CUT Is NP-Complete?
e We will reduce NAESAT to MAX CUT.

e Given an instance ¢ of 3SAT with m clauses, we shall
construct a graph G = (V, E) and a goal K such that:
— There is a cut of size at least K if and only if ¢ is
NAE-satisfiable.
e QOur graph will have multiple edges between two nodes.

— Each such edge contributes one to the cut if its nodes
are separated.

aGarey, Johnson, and Stockmeyer (1976).
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The Proof
e Suppose ¢’s m clauses are C1,Cq, ... ,Cp,.
e The boolean variables are z1,x2,... ,Tn.
e (G has 2n nodes: z1,Z2,... ,%Tn, %1, T2, ... , Tn.
e Each clause with 3 distinct literals makes a triangle in G.
e For each clause with two identical literals, there are two
parallel edges between the two distinct literals.
e No need to consider clauses with one literal (why?).
e For each variable z;, add n; copies of the edge [z;, —x],

where n; is the number of occurrences of x; and —z; in ¢.
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The Proof (continued)
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e Set K = bm.

e Suppose there is a cut (S, V — S) of size 5m or more.

e A clause (a triangle or two parallel edges) contributes at
most 2 to a cut no matter how you split it.

e Suppose both z; and —z; are on the same side of the cut.

e Then they together contribute at most 2n; edges to the
cut as they appear in at most n; different clauses.
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The Proof (concluded)

=

e The remaining 2m edges in the cut must come from the
m triangles or parallel edges that correspond to the

“ . ” clauses.
n, triangles

e As each can contribute at most 2 to the cut, all are split.

n; parallel lines

e A split clause means at least one of its literals is true

and at least one false.

1
=

e The other direction is left as an exercise.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 288 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 290

The Proof (continued)

e Changing the side of a literal contributing at most n; to

the cut does not decrease the size of the cut.

e Hence we assume variables are separated from their
negations.

e The total number of edges in the cut that join opposite

literals is ), n; = 3m.

— The total number of literals is 3m.
o (x1 Vo V) A(x1V—x3V—z3)A (-2 V22V I3).

e The cut size is 13 < 5 x 3 = 15.
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e (z1VzaVa)A(z1V 23V —x3)A (-1 V 22V I3).

e The cut size is now 15.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 292

MAX BISECTION

e MAX CUT becomes MAX BISECTION if we require that
S| =V -S|

e It has many applications, especially in VLSI layout.

e Sometimes imposing additional restrictions makes a
problem easier.

— SAT to 2SAT.

e Other times, it makes the problem as hard or harder.
— MIN CUT to BISECTION WIDTH.

— LINEAR PROGRAMMING to INTEGER PROGRAMMING.

MAX BISECTION Is NP-Complete

e We shall reduce the more general MAX CUT to MAX
BISECTION.

e Add |V] isolated nodes to G to yield G'.
e G’ has 2 x |V| nodes.

e As the new nodes have no edges, moving them around
contributes nothing to the cut.
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The Proof (concluded)

e Every cut (S,V — S) of G = (V, E) can be made into a
bisection by appropriately allocating the new nodes
between S and V — §.

e Hence each cut of G can be made a cut of G’ of the

same size, and vice versa.
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BISECTION WIDTH

e BISECTION WIDTH is like MAX BISECTION except that it
asks if there is a bisection of size at most K (sort of MIN
BISECTION).

e Unlike MIN CUT, BISECTION WIDTH remains

NP-complete.

— A graph G = (V, E), where |V| = 2n, has a bisection
of size K if and only if the complement of G has a
bisection of size n? — K.

— So G has a bisection of size > K if and only if its
complement has a bisection of size < n? — K.

HAMILTONIAN PATH Is NP-Complete®

Theorem 41 Given an undirected graph, the question
whether it has a Hamiltonian path is NP-complete.

o Reduce 3SAT to HAMILTONIAN PATH.

e We skip the messy proof in the text.

aKarp (1972).
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[llustration
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TSP (D) Is NP-Complete
Corollary 42 Tsp (D) is NP-complete.
e Consider a graph G with n nodes.
e Define d;; =11if [i,j] € Gand di; =21if [4,j] € G.
e Set the budget B =n+ 1.

e If G has no Hamiltonian paths, then every tour on the
new graph must contain at least two edges with weight 2.

e The total cost is then at least (n —2) +2-2=n+2.

e There is a tour of length B or less if and only if G has a
Hamiltonian path.
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Hamiltonian Path and TSP Tour 3-COLORING Is NP-Complete®

e We will reduce NAESAT to 3-COLORING.

e We are given a set of clauses C1,Cs, ... ,C), each with 3
literals.

e The boolean variables are z1,x2,... ,Tn.

e We shall construct a graph G such that it can be colored
with colors {0, 1,2} if and only if all the clauses can be
NAE-satisfied.

aKarp (1972).
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The Proof (continued)

Graph Colorin e Every variable z; is involved in a triangle [a, z;, ~;
p g g

e k-COLORING asks if the nodes of a graph can be colored with a common node a.

with < k colors such that no two adjacent nodes have e Each clause C; = (ci1 V ci2 V ¢i3) is also represented by a
the same color. triangle
e 2-COLORING is in P (why?). [, Ciz, iz .

-COLORING is NP- lete. .
* But 3-COLORING s complete e There is an edge between c;; and the node that

represents the jth literal of C;.
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Construction for - -+ A (z1 V —zg V —z3) A - - - The Proof (concluded)

Suppose the clauses are NAE-satisfiable.
e Color node a with color 2.

e Color the nodes representing literals by their truth
values (color 0 for false and color 1 for true).

e For each clause triangle:

— Pick any two literals with opposite truth values and
color the corresponding nodes with 0 if the literal is
true and 1 if it is false.

— Color the remaining node with color 2.
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The Proof (continued)
Suppose the graph is 3-colorable.

e Assume without loss of generality that node a takes the
color 2, z; takes the color 1, and —z; takes the color 0.

e A triangle must use all 3 colors.

e The clause triangle cannot be linked to nodes with all 1s
or all 0s; otherwise, it cannot be colored with 3 colors.

e Treat 1 as true and 0 as false (it is consistent).
e Treat 2 as either true or false; it does not matter.

e As each clause triangle contains one color 1 and one
color 0, the clauses are NAE-satisfied.
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