MAX CUT Is NP-Complete^a

- We will reduce NAESAT to MAX CUT.
- Given an instance ϕ of 3sat with m clauses, we shall construct a graph G=(V,E) and a goal K such that:
 - There is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
 - Each such edge contributes one to the cut if its nodes are separated.

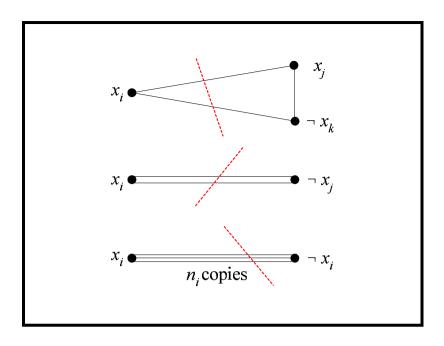
^aGarey, Johnson, and Stockmeyer (1976).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 284

The Proof

- Suppose ϕ 's m clauses are C_1, C_2, \ldots, C_m .
- The boolean variables are x_1, x_2, \ldots, x_n .
- G has 2n nodes: $x_1, x_2, \ldots, x_n, \neg x_1, \neg x_2, \ldots, \neg x_n$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable x_i , add n_i copies of the edge $[x_i, \neg x_i]$, where n_i is the number of occurrences of x_i and $\neg x_i$ in ϕ .



©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 286

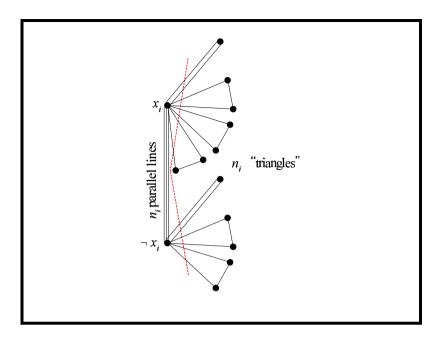
The Proof (continued)

- Set K = 5m.
- Suppose there is a cut (S, V S) of size 5m or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose both x_i and $\neg x_i$ are on the same side of the cut.
- Then they together contribute at most $2n_i$ edges to the cut as they appear in at most n_i different clauses.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 285

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University



©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 288

The Proof (continued)

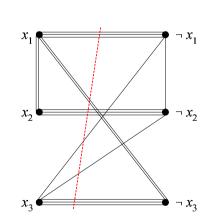
- Changing the side of a literal contributing at most n_i to the cut does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals is $\sum_{i} n_{i} = 3m$.
 - The total number of literals is 3m.

The Proof (concluded)

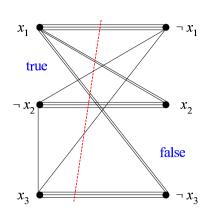
- The *remaining* 2m edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- As each can contribute at most 2 to the cut, all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 290



- $(x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3).$
- The cut size is $13 < 5 \times 3 = 15$.



- $(x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$.
- The cut size is now 15.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 292

MAX BISECTION

- MAX CUT becomes MAX BISECTION if we require that |S| = |V S|.
- It has many applications, especially in VLSI layout.
- Sometimes imposing additional restrictions makes a problem easier.
 - sat to 2sat.
- Other times, it makes the problem as hard or harder.
 - MIN CUT to BISECTION WIDTH.
 - LINEAR PROGRAMMING to INTEGER PROGRAMMING.

MAX BISECTION Is NP-Complete

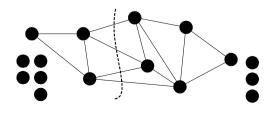
- We shall reduce the *more general* MAX CUT to MAX BISECTION.
- Add |V| isolated nodes to G to yield G'.
- G' has $2 \times |V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 294

The Proof (concluded)

- Every cut (S, V S) of G = (V, E) can be made into a bisection by appropriately allocating the new nodes between S and V S.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.



BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size $at\ most\ K$ (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH remains NP-complete.
 - A graph G = (V, E), where |V| = 2n, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 K$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 296

Page 297

Illustration

HAMILTONIAN PATH Is NP-Complete^a

Theorem 41 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

- Reduce 3SAT to HAMILTONIAN PATH.
- We skip the messy proof in the text.

^aKarp (1972).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

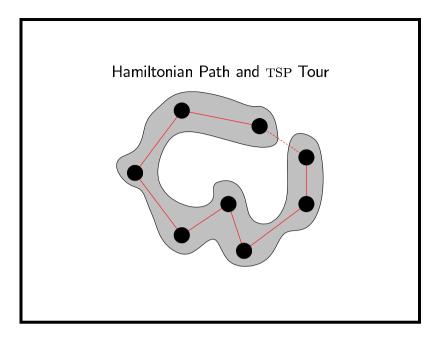
Page 298

TSP (D) Is NP-Complete

Corollary 42 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Define $d_{ij} = 1$ if $[i, j] \in G$ and $d_{ij} = 2$ if $[i, j] \notin G$.
- Set the budget B = n + 1.
- If G has no Hamiltonian paths, then every tour on the new graph must contain at least two edges with weight 2.
- The total cost is then at least $(n-2) + 2 \cdot 2 = n+2$.
- There is a tour of length B or less if and only if G has a Hamiltonian path.

2000 D 4 T/ 1 D 1 T 1 T/ 1



©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 300

Graph Coloring

- k-COLORING asks if the nodes of a graph can be colored with $\leq k$ colors such that no two adjacent nodes have the same color.
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete.

3-COLORING Is NP-Complete^a

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n .
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

^aKarp (1972).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 302

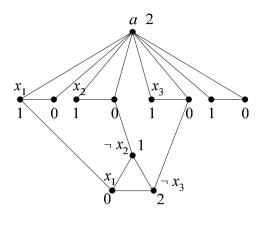
The Proof (continued)

- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.
- Each clause $C_i = (c_{i1} \lor c_{i2} \lor c_{i3})$ is also represented by a triangle

$$[c_{i1}, c_{i2}, c_{i3}].$$

• There is an edge between c_{ij} and the node that represents the jth literal of C_i .

Construction for $\cdots \land (x_1 \lor \neg x_2 \lor \neg x_3) \land \cdots$



©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 304

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2, x_i takes the color 1, and $\neg x_i$ takes the color 0.
- A triangle must use all 3 colors.
- The clause triangle cannot be linked to nodes with all 1s or all 0s; otherwise, it cannot be colored with 3 colors.
- Treat 1 as true and 0 as false (it is consistent).
- Treat 2 as either true or false; it does not matter.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

The Proof (concluded)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- For each clause triangle:
 - Pick any two literals with opposite truth values and color the corresponding nodes with 0 if the literal is true and 1 if it is false.
 - Color the remaining node with color 2.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 306