Savitch’s Theorem
Theorem 23 (Savitch (1970))
REACHABILITY € SPACE(log? n).
e Let G be a graph with n nodes.
e For i > 0, let
PATH(z,y,1)

mean there is a path from node z to node y of length at
most 2¢.

e There is a path from z to y if and only if
PATH(z, y, [logn]) holds.
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The Simple Idea for Computing PATH(z, y, 1)

e For i > 0, PATH(z, y,4) if and only if there exists a z
such that PATH(z, 2,7 — 1) and PATH(z,y,7 — 1).

e For PATH(z,y,0), check the input graph or if z = y.

e We compute PATH(z,y, [logn]) with a depth-first
search on a tree with nodes (z,y,7)s.

e Like stacks in recursive calls, we keep only the current
path of (z,y,1)s.

e The space requirement is proportional to the depth of
the tree, [logn].
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PATH(x,y,log n)

PATH(x,z,log n-1) PATH(z,y,log n-1)

e Depth is [logn], and each node (z,y, i) needs space
O(logn).

e The total space is O(log®n).
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The Algorithm for PATH(z, y, )
1: if i =0 then
2: if z=yor (z,y) € G then
3 return true;
4 else
5 return false;
6: end if
7: else
8 for z=1,2,... ,ndo
9 if PATH(z, 2z, — 1) and PATH(z,y,i — 1) then
10: return true;
11: end if
12:  end for
13:  return false;
14: end if
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 24 Let f(n) > logn be proper. Then
NSPACE(f(n)) C SPACE(f?(n)).

e Apply Savitch’s theorem to the configuration graph of
the NTM on the input.

e From p. 182, the configuration graph has O(c/(™)
nodes; hence each node takes space O(f(n)).

e But if we supply the whole graph before applying
Savitch’s theorem, we get O(cf(")) space!

Implications of Savitch’s Theorem
e PSPACE = NPSPACE.
e Nondeterminism is less powerful with respect to space.

e It may be very powerful with respect to time as it is not
known if P = NP.
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic (concluded)

e The way out is not to generate the graph at all.
e Instead, keep the graph implicit.

e We check for connectedness only when ¢ = 0, by
examining the input string.

e Specifically, given configurations z and ¥, we go over the
Turing machine’s program to determine if there is an
instruction that can turn x into ¥ in one step.

Nondeterministic Space Is Closed under Complement

e Closure under complement is trivially true for
deterministic complexity classes (p. 169).

e It is proved in the text that?
coNSPACE(f(n)) = NSPACE(f(n)).

e So

coNL = NL,
coPSPACE = NPSPACE.

e But there are still no hints of coNP = NP.

aSzelepscényi (1987) and Immerman (1988).
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The Immerman-Szelepscényi Theorem

Theorem 25 Given a graph G and a node x, the number of

nodes reachable from x in G can be computed by an NTM
within space O(logn).

Corollary 26 If f(n) > logn is proper, then

NSPACE(f(n)) = coNSPACE(f(n)).
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Degrees of Difficulty

e When is a problem more difficult than another? Reduction between Languages

e B reduces to A if there is a transformation R which for e Language L1 is reducible to L, if there is a function R
every input z of B yields an equivalent input R(x) of A. computable by a deterministic TM in space O(logn).
— The answer to z for B is the same as the answer to

e Furthermore, for all inputs z, € Ly if and only if

R(z) for A. R(z) € Lo.
— There must be restrictions on the complexity of

computing R. e R is said to be a (Karp) reduction from L; to Ls.

— Otherwise, R(z) might as well solve B. e Note that by Theorem 22 (p. 179), R runs in polynomial
time.
e Problem A is at least as hard as problem B if B reduces
to A.
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: A Paradox?
Reduction
e Degree of difficulty is not defined in terms of absolute
complexity.
A language B € TIME(n®) may be “easier” than a
- es/no *
X > R R > agorithm| : ¥ > language A € TIME(n?).
for A , . .
e This happens when B is reducible to A.
e In this case, it is necessary that | R(z)| = Q(n33) or that
R runs in time Q(n%) if
Solving problem B by calling the algorithm for problem once B ¢ TIME (n*)
and without further processing its answer.
for any k£ < 99.
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The Proof

. R(G b ted efficiently.
Reduction of HAMILTONIAN PATH to SAT * B(G) can be computed cfficiently
. e Suppose T |= R(G).
e Given a graph G, we shall construct a CNF R(G) such

that R(G) is satisfiable if and only if G has a e Clauses of 1 and 2 imply that for each j, there is a
Hamiltonian path. unique ¢ such that T' |= z;;.
e Suppose G has n nodes: 1,2,...,n. e Clauses of 3 and 4 imply that for each ¢, there is a

unique j such that T = x;;.
e R(G) has n? boolean variables z;j, 1 < 14,5 < n. queJ =i

e So there is a permutation 7 of the nodes such that

e 1;; means “node j is the ¢th node in the Hamiltonian . . )
! J n(3) = j if and only if T = z;;.

path.”
e Clauses of 5 guarantees that (7(1),7(2),...,7(n)) is a
Hamiltonian path.
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The Clauses of R(G)
1. Each node j must appear in the path. The Proof (ConC|uded)

® z1; V2 V- -V y; for each j. . .
1R ! J e Conversely, suppose G has a Hamiltonian path

(r(1),7(2),...,m(n)),

3. Every position 7 on the path must be occupied. where 7 is a permutation.

2. No node j appears twice in the path.
o —x;; V —xg; for all 4, 5, k with 4 # k.

® i Vxiz V-V Tin for each i. e Clearly, the truth assignment
4. No t des j and k th ition in the path. . . . .
o two nodes j and k occupy the same position in the pa T(z:;) = true if and only if (i) = j
e —x;; V iz for all 4, 5, k with j # k.
satisfies all clauses of R(G).
5. Nonadjacent nodes i and j cannot be adjacent in the path. (G)

e —xp; V xpy1; forall (4,5) Gand k=1,2,... ,n—1.
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The Construction

Reduction of REACHABILITY to CIRCUIT VALUE o hjp, is an AND gate with predecessors g x_1 and
e Note that both problems are in P. Ok,j,k—1, Where k =1,2,... ,n.
e Given a graph G = (V, E), we shall construct a ® gijk is an OR gate with predecessors g; k-1 and hq
variable-free circuit R(G). where k =1,2,... ,n.
e The output of R(G) is true if and only if there is a path ® Jinn is the output gate.
from node 1 to node n in G. e Interestingly, R(G) uses no — gates: It is a monotone
e Idea: the Floyd-Warshall algorithm. circuit.

e The depth of R(G) is O(n), which can be improved.
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The Gates Reduction of CIRCUIT SAT to SAT

e Given a circuit C, we shall construct a boolean
expression R(C) such that R(C) is satisfiable if and only
if C' is satisfiable.

— R(C) will turn out to be a CNF.

e The gates are
— gijk with 1 <i,j <nand 0 <k <n.
— hyjr with 1 <4, 5,k < n.

gigk: There is a path from node i to node j without e The variables of R(C) are those of C plus g for each

passing through a node bigger than k. gate g of C.

hije: There is a path from node 7 to node j passing e Each gate of C will be turned into equivalent clauses of

through k& but not any node bigger than k. R(C).

Input gate g;jo = true if and only if i = j or (4,7) € E. e Recall that clauses are Aed together.
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The Clauses of R(C)

g is a variable gate z: Add clauses (mg V z) and (g V ).
e Meaning: g & x.

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C) true.

g is a — gate with predecessor gate h: Add clauses
(mg Vv —h) and (g V h).

e Meaning: g < —h.
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The Clauses of R(C) (concluded)
g is a V gate with predecessor gates h and h': Add
clauses (-h V g), (-h' V g), and (R V A’V —g).
e Meaning: g < (b V R/).
g is a A gate with predecessor gates h and h': Add
clauses (—g V h), (g V h'), and (=hV =R’V g).
e Meaning: g < (h AR).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.
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Composition of Reductions

Proposition 27 If Ri5 is a reduction from Ly to Ly and
Ro3 is a reduction from Lg to Lg, then the composition
Ri2 - Ro3 s a reduction from Ly to L.

e Clearly z € L, if and only if Ry3(Ry2(x)) € Ls.

e How to compute Rjs - Roz in space O(logn)?

— Generating Ry2(z) before feeding it to Raz may
consume too much space because Ri2(z) is on a work
string.?

2This would not be a problem if we had required reductions to be in
P instead of L.
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The Proof (concluded)

e The trick is to let Rg3 drive the computation.
e It asks Rjs to deliver each bit of Ri2(x) when needed.

e When Ry wants the ith bit, Ria(z) will be simulated
until the ¢th bit is available; the beginning ¢ — 1 bits
should not be written to the string.

e This is feasible as Ry2(z) is produced in a write-only

manner.

— The ith output bit of Ri2(z) is well-defined because
once it is written, it will never be overwritten.
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Completeness®

As reducibility is transitive, problems can be ordered lllustration of Completeness and Hardness
with respect to their difficulty.

e Is there a mazimal element?

Let C be a complexity class and L € C.

e L is C-complete if every L' € C can be reduced to L.

— Every complexity class we have seen so far has
complete problems!

Complete problems capture the difficulty of a class
because they are the hardest, if they exist.

2Cook (1971).
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Hardness
e Let C be a complexity class. Closedness under Reduction
e L is C-hard if every L' € C can be reduced to L. e A class C is closed under reductions if whenever L is
e It is not required that L € C. reducible to L’ and L' € C, then L € C.
e If L is C-hard, then by definition, every C-complete e P, NP, coNP, L, NL, PSPACE, and EXP are all closed
problem can be reduced to L.2 under reductions.
aThanks to Mr. Ming-Feng Tsai (D92922003).
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_ Complete Problems and Complexity Classes
Complete Problems and Complexity Classes
Proposition 29 Let C' and C be two complezity classes

. , .
Proposition 28 Let C' and C be two complezity classes closed under reductions. If L is complete for both C and C',

such that C' C C. Assume C' is closed under reductions and then C = C'.

L is a complete problem for C. ThenC =C' if L € C'.
e All languages £ € C reduce to L € C'.
e Every language A € C reduces to L € C'.
e Since C’ is closed under reductions, £ € C’.
e Because C’ is closed under reductions, A € C'.
e Hence C C (.
e Hence C C C'.
e The proof for C' C C is symmetric.
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Table of Computation
e Let M = (K, X,4,s) be a single-string polynomial-time
deterministic TM deciding L.

Two Immediate Corollaries e Its computation on input  can be thought of as a

Proposition 28 implies that |z|* x |z |* table, where |z | is the time bound.

e P = NP if and only if an NP-complete problem in P. — It is a sequence of configurations.

: k
e L. =P if and only if a P-complete problem is in L. * Rows correspond to time steps 0 to |z [* — 1.

e Columns are positions in the string of M.

e The (i, j)th table entry represents the contents of
position j of the string after i steps of computation.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 224 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 226



Some Conventions To Simplify the Table

e M halts after at most |z |F — 2 steps.
— The string length hence never exceeds | z |¥.

— Assume a large enough £ to make it true for |z | > 2.

e Pad the table with | Js so that each row has length |z |*.

— The computation will never reach the right end of
the table for lack of time.

e If the cursor scans the jth position at time ¢ when M is
at state ¢ and the symbol is o, then the (7, j)th entry is
a new symbol oy.

Some Conventions To Simplify the Table (concluded)

e If M has halted before its time bound of |z |¥, so that
“yes” or “no” appears at a row before the last, then all
subsequent rows will be identical to that row.

e M accepts z if and only if the (| z|* — 1,5)th entry is
“yes” for some j.
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Some Conventions To Simplify the Table (continued)
e If g is “yes” or “no,” simply use “yes” or “no” instead of
Oq-
e Modify M so that the cursor starts not at > but at the
first symbol of the input.

e The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost >.

e So the first symbol in every row is a > and not a >,.

Comments

Each row is essentially a configuration.

If the input = 010001, then the first row is

k
[z |

>os1ooo1U|_|---|_|

A typical row may be

k
KX

>10100401110100 | || |---| ]

k

|z |
——f
The last rows must look like > - - - “yes” - - |_]
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A P-Complete Problem

Theorem 30 (Ladner (1975)) CIRCUIT VALUE is
P-complete.

e It is easy to see that CIRCUIT VALUE € P.

e For any L € P, we will construct a reduction R from L
to CIRCUIT VALUE.

e Given any input z, R(x) is a variable-free circuit such
that z € L if and only if R(z) evaluates to true.

e Let M decide L in time nk.

e Let T be the computation table of M on x.
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The Proof (continued)

Consider other entries T;;.

T;; depends on only T;_1 1, T;—1,5, and T;_1 j11.

Ti1j-1 | Ticay | Tici,541
j-li .

e Let I' denote the set of all symbols that can appear on
the table: X U {0, :0 € ¥,q € K}.

Encode each symbol of I' as an m-bit number, where
m = [logy | I'[]

(state assignment in circuit design).

The Proof (continued)

e Wheni=0,0r j=0,or j=|z|*—1, then the value of

T;; is known.

— Three out of four of T”’s borders are known.

>abcdefl
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— The jth symbol of z or | |, a I>, and a | |, respectively.

> L
> L
> L
> L
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The Proof (continued)
e Let binary string S;;15:;2 - - - Sijm encode Tj;.
e We may treat them interchangeably without ambiguity.

e The computation table is now a table of binary entries
Sije, where
0<i<nF-1,
0 S .] S nk - ]-7
1<4<m.
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The Proof (continued)

e Each bit S;;, depends on only 3m other bits:

Tio1j-10 Si—1j-11 Si—1j-1,2 + Sicij-1m

T 1,: Si—1,51 Si—1,5,2 o Sic14m

Tic1j+1: Sicij+11 Sicijyie 0 Sicijim
e So there are m boolean functions Fy, Fs, ... , F,, with

3m inputs each such that for all ¢,5 > 0,

Sije = Fy(Sic1,j-1,1,8i-1,j-1,2,-- - »Si—1,j—1,m>
Si—1,4,1,8i-1,4,2,- -+, Si—1,5,m,
Sim1,j4+1,15 Sim1,j41,2> - -+ »Sim1,j+1,m)-
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Circuit C
T. T. T

The Proof (continued)

e These F;’s depend on only M'’s specification, not on z.
e Their sizes are fixed.

e These boolean functions can be turned into boolean

circuits.

with 3m-bit inputs and m-bit outputs.
- Schematically, C(T%—l,j—laTi—l,ja Ti—l,j—i—l) = Tz]
— C is like an ASIC (application-specific IC) chip.

i-1j-1 'i-1j i-1j+1
J
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e Compose these m circuits in parallel to obtain circuit C'
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The Proof (concluded)

e A copy of circuit C is placed at each entry of the table.
— Exceptions are the top row and the two extreme
columns.
e R(zx) consists of (|z |*¥ — 1)(|z |¥ —2) copies of circuit C.

e Without loss of generality, assume the output
“yes” /“no” (coded as 1/0) appear at position
(ol —1,1).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 238



The Computation Tableau and R(z)

>abcdef L

> L

o K K

> L
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A Corollary
The construction in the above proof shows the following.

Corollary 31 If L € TIME(T (n)), then a circuit with
O(T?(n)) gates can decide if x € L for |z | = n.
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