Savitch's Theorem #### Theorem 23 (Savitch (1970)) REACHABILITY $\in SPACE(\log^2 n)$. - Let G be a graph with n nodes. - For $i \geq 0$, let mean there is a path from node x to node y of length at most 2^i . • There is a path from x to y if and only if $PATH(x, y, \lceil \log n \rceil)$ holds. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 187 # The Simple Idea for Computing PATH(x, y, i) - For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1). - For PATH(x, y, 0), check the input graph or if x = y. - We compute PATH $(x, y, \lceil \log n \rceil)$ with a depth-first search on a tree with nodes (x, y, i)s. - Like stacks in recursive calls, we keep only the current path of (x, y, i)s. - The space requirement is proportional to the depth of the tree, $\lceil \log n \rceil$. - Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$. - The total space is $O(\log^2 n)$. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 189 ``` The Algorithm for PATH(x, y, i) 1: if i = 0 then if x = y or (x, y) \in G then return true: else 4: return false; 5: end if 7: else for z = 1, 2, ..., n do if PATH(x, z, i - 1) and PATH(z, y, i - 1) then 10: return true; end if 11: end for 13: return false: 14: end if ``` # The Relation between Nondeterministic Space and Deterministic Space Only Quadratic Corollary 24 Let $f(n) \ge \log n$ be proper. Then $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$ - Apply Savitch's theorem to the configuration graph of the NTM on the input. - From p. 182, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)). - But if we supply the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space! ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191 # The Relation between Nondeterministic Space and Deterministic Space Only Quadratic (concluded) - The way out is not to generate the graph at all. - Instead, keep the graph implicit. - We check for connectedness only when i = 0, by examining the input string. - Specifically, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. #### Implications of Savitch's Theorem - PSPACE = NPSPACE. - Nondeterminism is less powerful with respect to space. - It may be very powerful with respect to time as it is not known if P = NP. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 193 #### Nondeterministic Space Is Closed under Complement - Closure under complement is trivially true for deterministic complexity classes (p. 169). - It is proved in the text that^a $$conspace(f(n)) = Nspace(f(n)).$$ So $$conl = NL,$$ $copspace = Npspace.$ • But there are still no hints of coNP = NP. ^aSzelepscényi (1987) and Immerman (1988). #### Degrees of Difficulty - When is a problem more difficult than another? - B reduces to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A. - The answer to x for B is the same as the answer to R(x) for A. - There must be restrictions on the complexity of computing R. - Otherwise, R(x) might as well solve B. - Problem A is at least as hard as problem B if B reduces to A. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 203 # Reduction $R \longrightarrow R(x) \qquad \text{algorithm for A} \qquad yes/no$ Solving problem B by calling the algorithm for problem *once* and *without* further processing its answer. # Reduction between Languages - Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$. - Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$. - R is said to be a (Karp) reduction from L_1 to L_2 . - Note that by Theorem 22 (p. 179), R runs in polynomial time. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 #### A Paradox? - Degree of difficulty is not defined in terms of *absolute* complexity. - A language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$. - This happens when B is reducible to A. - In this case, it is necessary that $|R(x)| = \Omega(n^{33})$ or that R runs in time $\Omega(n^{99})$ if $B \notin TIME(n^k)$ for any k < 99. #### Reduction of HAMILTONIAN PATH to SAT - Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable if and only if G has a Hamiltonian path. - Suppose G has n nodes: $1, 2, \ldots, n$. - R(G) has n^2 boolean variables x_{ij} , $1 \le i, j \le n$. - x_{ij} means "node j is the ith node in the Hamiltonian path." ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 207 ## The Clauses of R(G) - 1. Each node j must appear in the path. - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j. - 2. No node j appears twice in the path. - $\neg x_{ij} \lor \neg x_{kj}$ for all i, j, k with $i \neq k$. - 3. Every position i on the path must be occupied. - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each i. - 4. No two nodes j and k occupy the same position in the path. - $\neg x_{ij} \lor \neg x_{ik}$ for all i, j, k with $j \neq k$. - 5. Nonadjacent nodes i and j cannot be adjacent in the path. - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \not\in G$ and $k=1,2,\ldots,n-1$. #### The Proof - R(G) can be computed efficiently. - Suppose $T \models R(G)$. - Clauses of 1 and 2 imply that for each j, there is a unique i such that $T \models x_{ij}$. - Clauses of 3 and 4 imply that for each i, there is a unique j such that $T \models x_{ij}$. - So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$. - Clauses of 5 guarantees that $(\pi(1), \pi(2), \dots, \pi(n))$ is a Hamiltonian path. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 209 #### The Proof (concluded) \bullet Conversely, suppose G has a Hamiltonian path $$(\pi(1), \pi(2), \ldots, \pi(n)),$$ where π is a permutation. • Clearly, the truth assignment $$T(x_{ij}) =$$ true if and only if $\pi(i) = j$ satisfies all clauses of R(G). #### Reduction of REACHABILITY to CIRCUIT VALUE - Note that both problems are in P. - Given a graph G = (V, E), we shall construct a variable-free circuit R(G). - The output of R(G) is true if and only if there is a path from node 1 to node n in G. - Idea: the Floyd-Warshall algorithm. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 211 Page 212 #### The Gates - The gates are - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$. - $-h_{ijk}$ with 1 < i, j, k < n. - g_{ijk} : There is a path from node i to node j without passing through a node bigger than k. - h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k. - Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in E$. #### The Construction - h_{ijk} is an AND gate with predecessors $q_{i,k,k-1}$ and $q_{k,i,k-1}$, where $k = 1, 2, \dots, n$. - g_{ijk} is an OR gate with predecessors $g_{i,i,k-1}$ and $h_{i,i,k}$, where k = 1, 2, ..., n. - q_{1nn} is the output gate. - Interestingly, R(G) uses no \neg gates: It is a monotone circuit. - The depth of R(G) is O(n), which can be improved. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 213 #### Reduction of CIRCUIT SAT to SAT - \bullet Given a circuit C, we shall construct a boolean expression R(C) such that R(C) is satisfiable if and only if C is satisfiable. - -R(C) will turn out to be a CNF. - The variables of R(C) are those of C plus q for each gate g of C. - Each gate of C will be turned into equivalent clauses of R(C). - Recall that clauses are \wedge ed together. #### The Clauses of R(C) g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$. • Meaning: $g \Leftrightarrow x$. g is a true gate: Add clause (g). • Meaning: g must be true to make R(C) true. g is a false gate: Add clause $(\neg g)$. • Meaning: g must be false to make R(C) true. g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$. • Meaning: $g \Leftrightarrow \neg h$. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 215 # The Clauses of R(C) (concluded) - g is a \vee gate with predecessor gates h and h': Add clauses $(\neg h \vee g)$, $(\neg h' \vee g)$, and $(h \vee h' \vee \neg g)$. - Meaning: $g \Leftrightarrow (h \vee h')$. - g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(\neg h \lor \neg h' \lor g)$. - Meaning: $g \Leftrightarrow (h \wedge h')$. - q is the output gate: Add clause (q). - Meaning: g must be true to make R(C) true. #### Composition of Reductions **Proposition 27** If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \cdot R_{23}$ is a reduction from L_1 to L_3 . - Clearly $x \in L_1$ if and only if $R_{23}(R_{12}(x)) \in L_3$. - How to compute $R_{12} \cdot R_{23}$ in space $O(\log n)$? - Generating $R_{12}(x)$ before feeding it to R_{23} may consume too much space because $R_{12}(x)$ is on a work string.^a ^aThis would not be a problem if we had required reductions to be in P instead of L. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 217 #### The Proof (concluded) - The trick is to let R_{23} drive the computation. - It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed. - When R_{23} wants the *i*th bit, $R_{12}(x)$ will be simulated until the *i*th bit is available; the beginning i-1 bits should not be written to the string. - This is feasible as $R_{12}(x)$ is produced in a write-only manner. - The *i*th output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten. #### Completeness^a - As reducibility is transitive, problems can be ordered with respect to their difficulty. - Is there a maximal element? - Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$. - L is C-complete if every $L' \in C$ can be reduced to L. - Every complexity class we have seen so far has complete problems! - Complete problems capture the difficulty of a class because they are the hardest, if they exist. ^aCook (1971). ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 219 #### Hardness - \bullet Let ${\mathcal C}$ be a complexity class. - L is C-hard if every $L' \in C$ can be reduced to L. - It is not required that $L \in \mathcal{C}$. - If L is C-hard, then by definition, every C-complete problem can be reduced to L. ^aThanks to Mr. Ming-Feng Tsai (D92922003). ## Illustration of Completeness and Hardness ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 221 #### Closedness under Reduction - A class \mathcal{C} is **closed under reductions** if whenever L is reducible to L' and $L' \in \mathcal{C}$, then $L \in \mathcal{C}$. - P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions. #### Complete Problems and Complexity Classes **Proposition 28** Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is a complete problem for C. Then C = C' if $L \in C'$. - Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$. - Because C' is closed under reductions, $A \in C'$. - Hence $\mathcal{C} \subseteq \mathcal{C}'$. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 223 #### Two Immediate Corollaries Proposition 28 implies that - P = NP if and only if an NP-complete problem in P. - L = P if and only if a P-complete problem is in L. #### Complete Problems and Complexity Classes **Proposition 29** Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then $\mathcal{C} = \mathcal{C}'$. - All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}'$. - Since C' is closed under reductions, $\mathcal{L} \in C'$. - Hence $\mathcal{C} \subseteq \mathcal{C}'$. - The proof for $C' \subseteq C$ is symmetric. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 225 # Table of Computation - Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L. - Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound. - It is a sequence of configurations. - Rows correspond to time steps 0 to $|x|^k 1$. - \bullet Columns are positions in the string of M. - The (i, j)th table entry represents the contents of position j of the string after i steps of computation. #### Some Conventions To Simplify the Table - M halts after at most $|x|^k 2$ steps. - The string length hence never exceeds $|x|^k$. - Assume a large enough k to make it true for $|x| \ge 2$. - Pad the table with | so that each row has length $| x |^k$. - The computation will never reach the right end of the table for lack of time. - If the cursor scans the jth position at time i when M is at state q and the symbol is σ , then the (i, j)th entry is a new symbol σ_a . ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 227 #### Some Conventions To Simplify the Table (continued) - If q is "yes" or "no," simply use "yes" or "no" instead of σ_q . - Modify M so that the cursor starts not at \triangleright but at the first symbol of the input. - The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright . - So the first symbol in every row is $a \triangleright and not a \triangleright_q$. ## Some Conventions To Simplify the Table (concluded) - If M has halted before its time bound of $|x|^k$, so that "yes" or "no" appears at a row before the last, then all subsequent rows will be identical to that row. - M accepts x if and only if the $(|x|^k 1, j)$ th entry is "ves" for some j. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 229 #### Comments - Each row is essentially a configuration. - If the input x = 010001, then the first row is • A typical row may be $$\overbrace{>10100_{q}01110100 \bigsqcup \bigcup \cdots \bigsqcup}^{\mid x \mid^{k}}$$ • The last rows must look like $\triangleright \cdots$ "yes" \cdots #### A P-Complete Problem Theorem 30 (Ladner (1975)) CIRCUIT VALUE is P-complete. - It is easy to see that CIRCUIT VALUE $\in P$. - For any $L \in P$, we will construct a reduction R from L to CIRCUIT VALUE. - Given any input x, R(x) is a variable-free circuit such that $x \in L$ if and only if R(x) evaluates to true. - Let M decide L in time n^k . - Let T be the computation table of M on x. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 231 # The Proof (continued) - When i = 0, or j = 0, or $j = |x|^k 1$, then the value of T_{ij} is known. - The jth symbol of x or \bigsqcup , a \triangleright , and a \bigsqcup , respectively. - Three out of four of T's borders are known. ## The Proof (continued) - Consider other entries T_{ij} . - T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$. $$T_{i-1,j-1}$$ $T_{i-1,j}$ $T_{i-1,j+1}$ T_{ij} - Let Γ denote the set of all symbols that can appear on the table: $\Sigma \cup \{\sigma_q : \sigma \in \Sigma, q \in K\}$. - Encode each symbol of Γ as an m-bit number, where $$m = \lceil \log_2 |\Gamma| \rceil$$ (state assignment in circuit design). ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 233 ## The Proof (continued) - Let binary string $S_{ij1}S_{ij2}\cdots S_{ijm}$ encode T_{ij} . - We may treat them interchangeably without ambiguity. - The computation table is now a table of binary entries $S_{ij\ell}$, where $$0 \le i \le n^k - 1,$$ $$0 \le j \le n^k - 1,$$ $$1 \le \ell \le m.$$ #### The Proof (continued) • Each bit $S_{ij\ell}$ depends on only 3m other bits: $$T_{i-1,j-1}$$: $S_{i-1,j-1,1}$ $S_{i-1,j-1,2}$ \cdots $S_{i-1,j-1,m}$ $T_{i-1,j}$: $S_{i-1,j,1}$ $S_{i-1,j,2}$ \cdots $S_{i-1,j,m}$ $T_{i-1,j+1}$: $S_{i-1,j+1,1}$ $S_{i-1,j+1,2}$ \cdots $S_{i-1,j+1,m}$ • So there are m boolean functions F_1, F_2, \ldots, F_m with 3m inputs each such that for all i, j > 0, $$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1}, S_{i-1,j-1,2}, \dots, S_{i-1,j-1,m}, S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}, S_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}).$$ ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 235 ## The Proof (continued) - These F_i 's depend on only M's specification, not on x. - Their sizes are fixed. - These boolean functions can be turned into boolean circuits. - Compose these m circuits in parallel to obtain circuit C with 3m-bit inputs and m-bit outputs. - Schematically, $C(T_{i-1,j-1},T_{i-1,j},T_{i-1,j+1})=T_{ij}$. - C is like an ASIC (application-specific IC) chip. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 237 #### The Proof (concluded) - A copy of circuit C is placed at each entry of the table. - Exceptions are the top row and the two extreme columns. - R(x) consists of $(|x|^k 1)(|x|^k 2)$ copies of circuit C. - Without loss of generality, assume the output "yes"/"no" (coded as 1/0) appear at position $(|x|^k 1, 1)$. ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 239 # A Corollary The construction in the above proof shows the following. **Corollary 31** If $L \in TIME(T(n))$, then a circuit with $O(T^2(n))$ gates can decide if $x \in L$ for |x| = n.