Savitch's Theorem

Theorem 23 (Savitch (1970))

REACHABILITY $\in SPACE(\log^2 n)$.

- Let G be a graph with n nodes.
- For $i \geq 0$, let

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if $PATH(x, y, \lceil \log n \rceil)$ holds.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 187

The Simple Idea for Computing PATH(x, y, i)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- We compute PATH $(x, y, \lceil \log n \rceil)$ with a depth-first search on a tree with nodes (x, y, i)s.
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree, $\lceil \log n \rceil$.

- Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 189

```
The Algorithm for PATH(x, y, i)
1: if i = 0 then
     if x = y or (x, y) \in G then
       return true:
     else
4:
       return false;
5:
     end if
 7: else
     for z = 1, 2, ..., n do
       if PATH(x, z, i - 1) and PATH(z, y, i - 1) then
10:
          return true;
        end if
11:
     end for
13:
     return false:
14: end if
```

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 24 Let $f(n) \ge \log n$ be proper. Then

 $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 182, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we supply the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 191

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic (concluded)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when i = 0, by examining the input string.
- Specifically, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- It may be very powerful with respect to time as it is not known if P = NP.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 193

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 169).
- It is proved in the text that^a

$$conspace(f(n)) = Nspace(f(n)).$$

So

$$conl = NL,$$

 $copspace = Npspace.$

• But there are still no hints of coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A.
 - The answer to x for B is the same as the answer to R(x) for A.
 - There must be restrictions on the complexity of computing R.
 - Otherwise, R(x) might as well solve B.
- Problem A is at least as hard as problem B if B reduces to A.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 203

Reduction $R \longrightarrow R(x) \qquad \text{algorithm for A} \qquad yes/no$

Solving problem B by calling the algorithm for problem *once* and *without* further processing its answer.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (Karp) reduction from L_1 to L_2 .
- Note that by Theorem 22 (p. 179), R runs in polynomial time.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 205

A Paradox?

- Degree of difficulty is not defined in terms of *absolute* complexity.
- A language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
- This happens when B is reducible to A.
- In this case, it is necessary that $|R(x)| = \Omega(n^{33})$ or that R runs in time $\Omega(n^{99})$ if

 $B \notin TIME(n^k)$

for any k < 99.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable if and only if G has a Hamiltonian path.
- Suppose G has n nodes: $1, 2, \ldots, n$.
- R(G) has n^2 boolean variables x_{ij} , $1 \le i, j \le n$.
- x_{ij} means "node j is the ith node in the Hamiltonian path."

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 207

The Clauses of R(G)

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj}$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each i.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik}$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \not\in G$ and $k=1,2,\ldots,n-1$.

The Proof

- R(G) can be computed efficiently.
- Suppose $T \models R(G)$.
- Clauses of 1 and 2 imply that for each j, there is a unique i such that $T \models x_{ij}$.
- Clauses of 3 and 4 imply that for each i, there is a unique j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.
- Clauses of 5 guarantees that $(\pi(1), \pi(2), \dots, \pi(n))$ is a Hamiltonian path.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 209

The Proof (concluded)

 \bullet Conversely, suppose G has a Hamiltonian path

$$(\pi(1), \pi(2), \ldots, \pi(n)),$$

where π is a permutation.

• Clearly, the truth assignment

$$T(x_{ij}) =$$
true if and only if $\pi(i) = j$

satisfies all clauses of R(G).

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 211

Page 212

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$.
 - $-h_{ijk}$ with 1 < i, j, k < n.
- g_{ijk} : There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $q_{i,k,k-1}$ and $q_{k,i,k-1}$, where $k = 1, 2, \dots, n$.
- g_{ijk} is an OR gate with predecessors $g_{i,i,k-1}$ and $h_{i,i,k}$, where k = 1, 2, ..., n.
- q_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates: It is a monotone circuit.
- The depth of R(G) is O(n), which can be improved.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 213

Reduction of CIRCUIT SAT to SAT

- \bullet Given a circuit C, we shall construct a boolean expression R(C) such that R(C) is satisfiable if and only if C is satisfiable.
 - -R(C) will turn out to be a CNF.
- The variables of R(C) are those of C plus q for each gate g of C.
- Each gate of C will be turned into equivalent clauses of R(C).
- Recall that clauses are \wedge ed together.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

• Meaning: g must be false to make R(C) true.

g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.

• Meaning: $g \Leftrightarrow \neg h$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 215

The Clauses of R(C) (concluded)

- g is a \vee gate with predecessor gates h and h': Add clauses $(\neg h \vee g)$, $(\neg h' \vee g)$, and $(h \vee h' \vee \neg g)$.
 - Meaning: $g \Leftrightarrow (h \vee h')$.
- g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(\neg h \lor \neg h' \lor g)$.
 - Meaning: $g \Leftrightarrow (h \wedge h')$.
- q is the output gate: Add clause (q).
 - Meaning: g must be true to make R(C) true.

Composition of Reductions

Proposition 27 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \cdot R_{23}$ is a reduction from L_1 to L_3 .

- Clearly $x \in L_1$ if and only if $R_{23}(R_{12}(x)) \in L_3$.
- How to compute $R_{12} \cdot R_{23}$ in space $O(\log n)$?
 - Generating $R_{12}(x)$ before feeding it to R_{23} may consume too much space because $R_{12}(x)$ is on a work string.^a

^aThis would not be a problem if we had required reductions to be in P instead of L.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 217

The Proof (concluded)

- The trick is to let R_{23} drive the computation.
- It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed.
- When R_{23} wants the *i*th bit, $R_{12}(x)$ will be simulated until the *i*th bit is available; the beginning i-1 bits should not be written to the string.
- This is feasible as $R_{12}(x)$ is produced in a write-only manner.
 - The *i*th output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten.

Completeness^a

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if every $L' \in C$ can be reduced to L.
 - Every complexity class we have seen so far has complete problems!
- Complete problems capture the difficulty of a class because they are the hardest, if they exist.

^aCook (1971).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 219

Hardness

- \bullet Let ${\mathcal C}$ be a complexity class.
- L is C-hard if every $L' \in C$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is C-hard, then by definition, every C-complete problem can be reduced to L.

^aThanks to Mr. Ming-Feng Tsai (D92922003).

Illustration of Completeness and Hardness

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 221

Closedness under Reduction

- A class \mathcal{C} is **closed under reductions** if whenever L is reducible to L' and $L' \in \mathcal{C}$, then $L \in \mathcal{C}$.
- P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 28 Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is a complete problem for C. Then C = C' if $L \in C'$.

- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because C' is closed under reductions, $A \in C'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 223

Two Immediate Corollaries

Proposition 28 implies that

- P = NP if and only if an NP-complete problem in P.
- L = P if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes

Proposition 29 Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then $\mathcal{C} = \mathcal{C}'$.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}'$.
- Since C' is closed under reductions, $\mathcal{L} \in C'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- The proof for $C' \subseteq C$ is symmetric.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 225

Table of Computation

- Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound.
 - It is a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^k 1$.
- \bullet Columns are positions in the string of M.
- The (i, j)th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table

- M halts after at most $|x|^k 2$ steps.
 - The string length hence never exceeds $|x|^k$.
 - Assume a large enough k to make it true for $|x| \ge 2$.
- Pad the table with | so that each row has length $| x |^k$.
 - The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is at state q and the symbol is σ , then the (i, j)th entry is a new symbol σ_a .

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 227

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_q .
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright .
- So the first symbol in every row is $a \triangleright and not a \triangleright_q$.

Some Conventions To Simplify the Table (concluded)

- If M has halted before its time bound of $|x|^k$, so that "yes" or "no" appears at a row before the last, then all subsequent rows will be identical to that row.
- M accepts x if and only if the $(|x|^k 1, j)$ th entry is "ves" for some j.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 229

Comments

- Each row is essentially a configuration.
- If the input x = 010001, then the first row is

• A typical row may be

$$\overbrace{>10100_{q}01110100 \bigsqcup \bigcup \cdots \bigsqcup}^{\mid x \mid^{k}}$$

• The last rows must look like $\triangleright \cdots$ "yes" \cdots

A P-Complete Problem

Theorem 30 (Ladner (1975)) CIRCUIT VALUE is P-complete.

- It is easy to see that CIRCUIT VALUE $\in P$.
- For any $L \in P$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, R(x) is a variable-free circuit such that $x \in L$ if and only if R(x) evaluates to true.
- Let M decide L in time n^k .
- Let T be the computation table of M on x.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 231

The Proof (continued)

- When i = 0, or j = 0, or $j = |x|^k 1$, then the value of T_{ij} is known.
 - The jth symbol of x or \bigsqcup , a \triangleright , and a \bigsqcup , respectively.
 - Three out of four of T's borders are known.

The Proof (continued)

- Consider other entries T_{ij} .
- T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$.

$$T_{i-1,j-1}$$
 $T_{i-1,j}$ $T_{i-1,j+1}$ T_{ij}

- Let Γ denote the set of all symbols that can appear on the table: $\Sigma \cup \{\sigma_q : \sigma \in \Sigma, q \in K\}$.
- Encode each symbol of Γ as an m-bit number, where

$$m = \lceil \log_2 |\Gamma| \rceil$$

(state assignment in circuit design).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 233

The Proof (continued)

- Let binary string $S_{ij1}S_{ij2}\cdots S_{ijm}$ encode T_{ij} .
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{ij\ell}$, where

$$0 \le i \le n^k - 1,$$

$$0 \le j \le n^k - 1,$$

$$1 \le \ell \le m.$$

The Proof (continued)

• Each bit $S_{ij\ell}$ depends on only 3m other bits:

$$T_{i-1,j-1}$$
: $S_{i-1,j-1,1}$ $S_{i-1,j-1,2}$ \cdots $S_{i-1,j-1,m}$ $T_{i-1,j}$: $S_{i-1,j,1}$ $S_{i-1,j,2}$ \cdots $S_{i-1,j,m}$ $T_{i-1,j+1}$: $S_{i-1,j+1,1}$ $S_{i-1,j+1,2}$ \cdots $S_{i-1,j+1,m}$

• So there are m boolean functions F_1, F_2, \ldots, F_m with 3m inputs each such that for all i, j > 0,

$$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1}, S_{i-1,j-1,2}, \dots, S_{i-1,j-1,m}, S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}, S_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}).$$

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 235

The Proof (continued)

- These F_i 's depend on only M's specification, not on x.
- Their sizes are fixed.
- These boolean functions can be turned into boolean circuits.
- Compose these m circuits in parallel to obtain circuit C with 3m-bit inputs and m-bit outputs.
 - Schematically, $C(T_{i-1,j-1},T_{i-1,j},T_{i-1,j+1})=T_{ij}$.
 - C is like an ASIC (application-specific IC) chip.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 237

The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
 - Exceptions are the top row and the two extreme columns.
- R(x) consists of $(|x|^k 1)(|x|^k 2)$ copies of circuit C.
- Without loss of generality, assume the output "yes"/"no" (coded as 1/0) appear at position $(|x|^k 1, 1)$.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 239

A Corollary

The construction in the above proof shows the following.

Corollary 31 If $L \in TIME(T(n))$, then a circuit with $O(T^2(n))$ gates can decide if $x \in L$ for |x| = n.