A Nondeterministic Algorithm for Satisfiability

¢ is a boolean formula with n variables.
1: fori=1,2,... ,ndo
2: Guess z; € {0, 1}; {Nondeterministic choice.}
3: end for
4: {Verification:}
5: if ¢(x1,22,... ,2,) = 1 then
6 “yes”;
7: else
8 “no”;
9: end if

Analysis
e The algorithm decides language {¢ : ¢ is satisfiable}.

— The computation tree is a complete binary tree of
depth n.

— Every computation path corresponds to a particular
truth assignment out of 2™.

— ¢ is satisfiable if and only if there is a computation
path (truth assignment) that results in “yes.”

e General paradigm: Guess a “proof” and then verify it.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 80

The Computation Tree for Satisfiability

x,=0
8
9 P13 1 LN

yes

“ R I T T L] 2]

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 81

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 82

The Traveling Salesman Problem

e We are given n cities 1,2,... ,n and integer distances
d;; between any two cities ¢ and j.

e Assume d;; = dj; for convenience.

e The traveling salesman problem (TSP) asks for the
total distance of the shortest tour of the cities.

e The decision version TSP (D) asks if there is a tour with
a total distance at most B, where B is an input.

e Both problems are extremely important but equally
hard (p. 308 and p. 370).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 83

A Nondeterministic Algorithm for TSP (D)
fori=1,2,... ,ndo
Guess z; € {1,2,... ,n}; {The ith city.}

end for

. . Time Complexity Classes under Nondeterminism
n4+1 :— T1;

{Verification stage:} e NTIME(f(n)) is the set of languages decided by NTMs
if z1,2,... %, are distinct and >.7 | de; 2,4, < B then within time f(n).

113 ”

yes”;
e NTIME(f(n)) is a complexity class.

else

143

no”;

end if

—
=4

(The degree of nondeterminism is n.)

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 84 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 86
NP
e Define
Time Complexity under Nondeterminism NP = | J NTIME(n").
k>0

e Nondeterministic machine N decides L in time f(n),
where f: N — N, if
— N decides L, and

Clearly P C NP.

Think of NP as efficiently verifiable problems.

— for any x € X*, N does not have a computation path — Boolean satisfiability (SAT).

longer than f(|z). — TSP (D).

e We charge only the “depth” of the computation tree. — Hamiltonian path.

— Graph colorability.

The most important open problem in computer science
is whether P = NP.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 85 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 87

Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N ..
raph Reachabili

in time f(n). Then it is decided by a 3-string deterministic Graph Reachability

TM M in time O(c?™), where ¢ > 1 is some constant e Let G(V, E) be a directed graph (digraph).

depending on N. e REACHABILITY asks if, given nodes a and b, does G

e On input z, M goes down every computation path of IV contain a path from a to b?

using depth-first search (but M does not know f(n)). e Can be easily solved in polynomial time by breadth-first

“yes,” then M enters the “yes” search.

e If some path leads to

state. e How about the nondeterministic space complexity?

e If none of the paths leads to “yes,” then M enters the
“no” state.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 88 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 90

The First Try in NSPACE(n logn)
1: 21 := a; {Assume a # b.}
2: fori=2,3,... ,ndo
NTIME vs. TIME 3: Guess z; € {v1,v2,...,v,}; {The ith node.}
Corollary 6 NTIME(f(n))) C |, TIME(c/(™). 4: end for
5: for 1 =2,3,... ,ndo
e Does converting an NTM into a TM require exploring 6 if (¢i 1,2;) ¢ E then
all the computation paths of the NTM as done in - “no”s
Theorem 57 s endif
e This is the most important question in theory with 9: if z; = b then
practical implications. 10 “yes”;
11: end if
12: end for
13: “no”;

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 89 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 91

In Fact REACHABILITY € NSPACE(logn) Infinite Sets
1: = a;
5 fori—=2.3 n do e A set is countable if it is finite or if it can be put in
3. Guess ;} ’6 2 ’3 n}: {The next node.} one-one correspondence with N, the set of natural
4: if (z,y) € E then numbers.
5: “no”; — Set of integers Z.
6: end if *x 00,1 1,2-3,3<5,...,-12,-2
7. if y = b then 4, -3 6,....
8: “yes”; — Set of positive integers Z: i — 1 <+ i.
9 endif — Set of odd integers: (i —1)/2 < i.
10: =, .
z £ 4 — Set of rational numbers: See next page.
11: end for
12: “no”: — Set of squared integers: i <> V/i.
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 92 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 94
Space Analysis Rational Numbers Are Countable
e Variables i, z, and y each require O(logn) bits. W2 | ¥3 | wa |l vus | ve
e Testing (z,y) € E is accomplished by consulting the A
input string with counters of O(logn) bits long.
e Hence 3 4
REACHABILITY € NSPACE(logn). 4
— REACHABILITY with more than one terminal node 5

also has the same complexity.

REACHABILITY € P (p. 175).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 93 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 95

Cardinality
e For any set A, define |[A| as A’s cardinality (size).

e Two sets are said to have the same cardinality (written
as |A| = |B| or A ~ B) if there exists a one-to-one
correspondence between their elements.

e 24 denotes set A’s power set, that is {B: B C A}.

— If |A| = k, then |24] = 2k,
— So |A] < |24| when A is finite.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 96

Cardinality (concluded)

|A| < |B| if there is a one-to-one correspondence
between A and one of B’s subsets.

] < |B| if |A| < |B| but | 4] £|B].
o If AC B, then |A| < |B|.

But if A C B, then |A] < |B|?

Cardinality and Infinite Sets
e If A and B are infinite sets, it is possible that A C B yet
|A] = |BJ.
— The set of integers properly contains the set of odd
integers.

— But the set of integers has the same cardinality as
the set of odd integers (p. 94).

e A lot of “paradoxes.”

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 98

Hilbert's® Paradox of the Grand Hotel

e For a hotel with a finite number of rooms with all the
rooms occupied, a new guest will be turned away.

e Now let us imagine a hotel with an infinite number of
rooms, and all the rooms are occupied.

e A new guest comes and asks for a room.

e “But of course!” exclaims the proprietor, and he moves
the person previously occupying Room 1 into Room 2,
the person from Room 2 into Room 3, and so on

e The new customer occupies Room 1.

aDavid Hilbert (1862-1943).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 97

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 99

Hilbert's Paradox of the Grand Hotel (concluded)

e Let us imagine now a hotel with an infinite number of
rooms, all taken up, and an infinite number of new
guests who come in and ask for rooms.

Y

e “Certainly, gentlemen,” says the proprietor, “just wait a

minute.”

e He moves the occupant of Room 1 into Room 2, the
occupant of Room 2 into Room 4, and so on.

e Now all odd-numbered rooms become free and the
infinity of new guests can be accommodated in them.

e “There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)

Cantor’'s® Theorem

Theorem 7 The set of all subsets of N (2V) is infinite and
not countable.

e Suppose it is countable with f : N — 2" being a
bijection.

e Consider theset B={keN:k ¢ f(k)} CN.

e Suppose B = f(n) for some n € N.

aGeorg Cantor (1845-1918).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 100

Galileo’s* Paradox (1638)

e The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

e This is contrary to the axiom of Euclid that the whole is
greater than any of its proper parts.

e Resolution of paradoxes: Pick the notion that results in
“better” mathematics.

e The difference between a mathematical paradox and a
contradiction is often a matter of opinion.

2Galileo (1564-1642).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 102

The Proof (concluded)

e If n € f(n), then n € B, but then n & B by B’s
definition.?

o If n ¢ f(n), then n ¢ B, but then n € B by B’s
definition.

e Hence B # f(n) for any n.

e f is not a bijection, a contradiction.

2If B is empty, skip this part. Thanks to a lively class discussion on
October 1, 2003.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 101

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 103

Cantor’s Diagonalization Argument lllustrated A Corollary of Cantor’s Theorem

f(2) Corollary 8 For any set T, finite or infinite,

f(2)
T|< |27
(3)

(4) The inequality holds in the finite A case.

(5) Assume A is infinite now.

f(6)
|T| < |2T|: Consider f(z) = {z}.

e The strict inequality uses the same argument as
B Cantor’s theorem.
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 104 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 106
How about ... 72 A Second Corollary of Cantor's Theorem
e Consider this subset of 2N: Corollary 9 The set of all functions on N is not countable.
N ={z:2CN,|z|=k}. e Every function f: N — {0,1} determines a set

e Is it still uncountable? {n:f(n)=1} CN.

e No. e And vice versa.
— 28, [=IN]. e So the set of functions from N to {0, 1} has cardinality
- 25| =1Ql. | 2N].

2Thanks to a lively class discussion on October 1, 2003. e Corollary 8 (p. 106) then implies the claim.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 105 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 107

Existence of Uncomputable Problems
The Halting Problem

e Every program is a finite sequence of Os and 1s, thus a
nonnegative integer. e Undecidable problems are problems that have no

. algorithms or languages that are not recursive.
e Hence every program corresponds to some integer. g guag

e The set of programs is countable e We knew undecidable problems exist (p. 108).

e A function is a mapping from integers to integers. e We now define a concrete undecidable problem, the
halting problem:
e The set of functions is not countable by Corollary 9

(p. 107). H={M;z: M(z)#}.
e S0 there must exist functions for which there are no — Does M halt on input z?
programs.
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 108 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 110

Universal Turing Machine?

e A universal Turing machine U interprets the input H Is Recursively Enumerable

as the description of a TM M concatenated with the Use the universal TM U to simulate M on z.

description of an input to that machine, x.

— Both M and z are over the alphabet of U.

When M is about to halt, U enters a “yes” state.

If M i }
e U simulates M on z so that (z) diverges, so does U

This TM accepts H.
UM;z)= M(z).

Membership of z in any recursively enumerative

e U is like a modern computer, which executes any valid language accepted by M can be answered by asking

machine code, or a Java Virtual machine, which

: 2
executes any valid bytecode. M;z € H?

aTuring (1936).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 109 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 111

H Is Not Recursive
e Suppose there is a TM My that decides H.
e Consider the program D(M) that calls My:

1: if My (M;M) = “yes” then

2: % {Writing an infinite loop is easy, right?}
3: else

4: ‘“yes”;

5: end if

e Consider D(D):
— D(D)=,/= Mu(D;D) = “yes” = D;D € H =
D(D) # /7, a contradiction.
(D) = “yes” = My (D; D) = “no” = D;D ¢ H =
(D) =, a contradiction.

oo

Self-Loop Paradoxes
Cantor’s Paradox (1899): Let T be the set of all sets.
e Then 27 C T, but we know [27] > |T!
Russell’s* Paradox (1901): Consider R ={A: A ¢ A}.
e If R € R, then R ¢ R by definition.
e If R¢Z R, then R € R also by definition.
Eubulides: The Cretan says, “All Cretans are liars.”

Sharon Stone in The Specialist (1994): “I'm not a

woman you can trust.”

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 112

Comments

e In general, we cannot tell if a running program will ever
halt.

e Two levels of interpretations of M:
— A sequence of 0s and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes.
— Concepts should be familiar to computer scientists.

— Supply a C compiler to a C compiler, a Lisp
interpreter to a Lisp interpreter, etc.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 114

Axiomatic Set Theory

e Russell’s paradox initiated the effort to axiomatize set
theory in 1908-1929.

e The standard theory is the Zermelo-Fraenkel-Skolem
(ZFS) system.?

e In ZFS, the Axiom of Foundation says that any
descending membership chain is finite.

e Then z ¢ z for any set z.

— Otherwise, x € x € € - - -, a contradiction

e Hence Russell’s paradox is avoided.

2Ernst Friedrich Ferdinand Zermelo (1871-1953); Adolf Abraham
Halevi Fraenkel (1891-1965); Albert Thoralf Skolem (1887-1963).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 113

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 115

More Undecidability
e {M : M halts on all inputs}.

— Given M;zx, we construct the following machine:
% My(y) :if y = x then M(x) else halt.

M, halts on all inputs if and only if M halts on z.

— So if the said language were recursive, H would be
recursive, a contradiction.

This technique is called reduction.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 116

More Undecidability (concluded)
e {M;z : there is a y such that M (z) = y}.

o {M;z;y: M(z) = y}.

o {M;z : the computation M on input z uses all states of M}.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 117

Reductions in Proving Undecidability

Language H is known to be undecidable.

We try to find a computable transformation (or
reduction) R such that

R(z) € L if and only if z € H.

This suffices to prove that L is undecidable.

e Suppose we are asked to prove L is undecidable.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 118
Complements of Recursive Languages
Lemma 10 If L is recursive, then so is L.
e Let L be decided by M (which is deterministic).
e Swap the “yes” state and the “no” state of M.
e The new machine decides L.
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 119

Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and L are

recursively enumerable.

e Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

e Simulate M and M in an interleaved fashion.
e If M accepts, then z € L and M’ halts on state “yes.”

o If M accepts, then z ¢ L and M’ halts on state “no.”

R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are
recursively enumerable (note that coRE is not RE).
R: The set of all recursive languages.
e R = RENcoRE (p. 120).

e There exist languages in RE but not in R or coRE
(such as H).

There are languages in coRE but not in R or RE
(such as H).

e There are languages in neither RE nor coRE.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 120

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 122

A Very Useful Corollary and Its Consequences

then L is not recursively enumerable.
e Suppose L is recursively enumerable.
e Then both L and L are recursively enumerable.
e By Lemma 11, L is recursive, a contradiction.

Corollary 13 H is not recursively enumerable.

Corollary 12 L is recursively enumerable but not recursive,

RE coRE

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 121

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 123

Notations

Suppose M is a TM accepting L.

Write L(M) = L.

If M(z) is never “yes” nor /' (as required by the
definition of acceptance), we define L(M) = ().

e Of course, if M(z) = for all z, then L(M) = 0, too.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 124

Nontrivial Properties of Sets in RE

A property of a set accepted by a TM (a recursively

enumerable set) is trivial if it is always true or false.

— Is an RE set accepted by a TM? Always true.

It can be defined by the set C of RE sets that satisfy it.

The property is nontrivial if C # RE and C # 0.

e Up to now, all nontrivial properties of RE sets are
undecidable (pp. 116-117).

In fact, Rice’s theorem confirms that.

Rice’s Theorem

Theorem 14 (Rice’s theorem) Suppose C # () is a proper
subset of the set of all recursively enumerable languages.
Then the question “L(M) € C?” is undecidable.

e Assume that) € C (otherwise, repeat the proof for the
class of all recursively enumerable languages not in C).

e Let L € C be accepted by TM My, (recall that C # 0).

o Let My accept the undecidable language H.
— My exists (p. 111).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 126

The Proof (continued)

e Construct machine My (y):

if My(z) = “yes” then My (y) else /

e We next prove that
L(M,) € C if and only if z € H. (2)
— The halting problem has been reduced to deciding
L(M,) € C.

— Hence L(M,) € C must be undecidable, and we are
done.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 125

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 127

The Proof (concluded)

e Suppose z € H, i.e., My(x) = “yes.”

— M, (y) determines this, and it either accepts y or
never halts, depending on whether y € L.

— Hence L(M,) =L €C.
e Suppose My (z) =
— M, never halts.

- L(M,)=0¢cC.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 128

Consequences of Rice's Theorem

Corollary 15 The following properties of recursively
enumerative sets are undecidable.

e Emptiness.
e Finiteness.
e Regularity.

e Context-freedom.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 129

